PM2.5 pollution modulates the response of ozone formation to VOC emitted from various sources: Insights from machine learning

氮氧化物 臭氧 环境科学 空气污染 气溶胶 燃烧 微粒 污染 化石燃料 环境化学 环境工程 大气科学 化学 地质学 有机化学 生物 生态学
作者
Chenliang Tao,Qingzhu Zhang,Sisi Huo,Yuchao Ren,Shuyan Han,Qiao Wang,Wenxing Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:916: 170009-170009 被引量:5
标识
DOI:10.1016/j.scitotenv.2024.170009
摘要

Numerous studies have linked ozone (O3) production to its precursors and fine particulate matter (PM2.5), while the complex interaction effects of PM2.5 and volatile organic compounds (VOCs) on O3 remain poorly understood. A systematic approach based on an interpretable machine learning (ML) model was utilized to evaluate the primary driving factors that impact O3 and to elucidate how changes in PM2.5, VOCs from different sources, NOx, and meteorological conditions either promote or inhibit O3 formation through their individual and synergistic effects in a tropical coastal city, Haikou, from 2019 to 2020. The results suggest that under low PM2.5 levels, alongside the linear O3-PM2.5 relationship observed, O3 formation is suppressed by PM2.5 with higher proportions of traffic-derived aerosol. Vehicle VOC emissions contributed maximally to O3 formation at midday, despite the lowest concentration. VOCs from fossil fuel combustion and industry emissions, which have opposing effects on O3, act as inhibitors and promoters by inducing diverse photochemical regimes. As PM2.5 pollution escalates, the impact of these VOCs reverses, becoming more pronounced in shaping O3 variation. Sensitivity analysis reveals that the O3 formation regime is VOC-limited, and effective regional O3 mitigation requires prioritizing substantial VOC reductions to offset enhanced VOC sensitivity induced by the co-reduction in PM2.5, with a focus on industrial and vehicular emissions, and subsequently, fossil fuel combustion once PM2.5 is effectively controlled. This study underscores the potential of the SHAP-based ML approach to decode the intricate O3-NOx-VOCs-PM2.5 interplay, considering both meteorological and atmospheric compositional variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大侠完成签到 ,获得积分10
1秒前
情怀应助鱼鱼采纳,获得10
1秒前
Silverexile完成签到,获得积分10
2秒前
善学以致用应助dr采纳,获得10
2秒前
LIUZQ发布了新的文献求助10
2秒前
烟花应助高山采纳,获得10
2秒前
2秒前
完美世界应助东如海采纳,获得10
3秒前
3秒前
CNAxiaozhu7应助HXie采纳,获得10
4秒前
4秒前
旺仔不甜完成签到,获得积分10
4秒前
6秒前
sasa完成签到,获得积分10
7秒前
8秒前
8秒前
Paris发布了新的文献求助10
9秒前
IRONY发布了新的文献求助10
9秒前
9秒前
9秒前
亦辰发布了新的文献求助10
13秒前
EdinLiv发布了新的文献求助30
13秒前
overmind发布了新的文献求助10
14秒前
cece发布了新的文献求助10
15秒前
18秒前
西卡完成签到,获得积分10
19秒前
19秒前
EdinLiv完成签到,获得积分10
19秒前
20秒前
22秒前
小蘑菇应助阳光的豁采纳,获得10
23秒前
23秒前
小明同学发布了新的文献求助10
23秒前
JHcHuN发布了新的文献求助10
25秒前
26秒前
核桃发布了新的文献求助10
27秒前
bkagyin应助Re采纳,获得10
28秒前
28秒前
科研通AI5应助科学家采纳,获得10
28秒前
打打应助doujuanjuan采纳,获得10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737566
求助须知:如何正确求助?哪些是违规求助? 3281296
关于积分的说明 10024292
捐赠科研通 2998016
什么是DOI,文献DOI怎么找? 1644966
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794