Realization of qualitative to semi-quantitative trace detection via SERS-ICA based on internal standard method

规范化(社会学) 表面增强拉曼光谱 拉曼光谱 独立成分分析 化学 模式识别(心理学) 均方误差 分析化学(期刊) 生物系统 人工智能 色谱法 拉曼散射 计算机科学 光学 统计 数学 物理 社会学 人类学 生物
作者
Xiaoming Li,Jiaqi Hu,Zhang De,Xiubin Zhang,Zhetao Wang,Yufeng Wang,Qiang Chen,Pei Liang
出处
期刊:Talanta [Elsevier]
卷期号:271: 125650-125650 被引量:3
标识
DOI:10.1016/j.talanta.2024.125650
摘要

Surface-enhanced Raman spectroscopy (SERS) can quickly identify molecular fingerprints and has been widely used in the field of rapid detection. However, the non-uniformity inherent in SERS substrate signals, coupled with the finite nature of the detection object, significantly hampers the advancement of SERS. Nowadays, the existing mature immunochromatographic assay (ICA) method is usually combined with SERS technology to address the defects of SERS detection. Nevertheless, the porous structure of the strip will also affect the signal uniformity during detection. Obviously, a method using SERS-ICA is needed to effectively solve signal fluctuations, improve detection accuracy, and has certain versatility. This paper introduces an internal standard method combining deep learning to predict and process Raman data. Based on the signal fluctuation of single-antigen SERS-ICA test strip, the double-antigen SERS-ICA test strip was constructed. The full spectrum Raman data of double-antigen SERS-ICA test strip was normalized by the sum of two characteristic peaks of internal standard molecules, and then processed by deep learning algorithm. The Relative Standard Deviation (RSD) of Raman data of bisphenol A was compared before and after internal standard normalization of double-antigen SERS-ICA test strip. The RSD processed by this method was increased by 3.8 times. After normalization, the prediction accuracy of Root Mean Square Error (RMSE) is improved by 2.66 times, and the prediction accuracy of R-square (R2) is increased from 0.961 to 0.994. The results showed that RMSE and R2 were used to comprehensively predict the collected data of double-antigen SERS-ICA test strip, which could effectively improve the prediction accuracy. The internal standard algorithm can effectively solve the challenges of uneven hot spots and poor signal reproducibility on the test strip to a certain extent, so as to improve the semi-quantitative accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sujingbo完成签到 ,获得积分10
1秒前
1秒前
wyd发布了新的文献求助10
2秒前
蔺子凡发布了新的文献求助10
4秒前
4秒前
我是老大应助长生采纳,获得10
4秒前
愉快之槐发布了新的文献求助10
4秒前
科研通AI2S应助CruiSk采纳,获得10
4秒前
tomas完成签到,获得积分10
5秒前
Akim应助行李早已收拾好丶采纳,获得10
6秒前
JETSTREAM完成签到,获得积分10
7秒前
7秒前
ll发布了新的文献求助10
7秒前
sy完成签到 ,获得积分10
9秒前
9秒前
9秒前
飞飞完成签到,获得积分10
9秒前
10秒前
10秒前
Liy发布了新的文献求助10
13秒前
桑丘子发布了新的文献求助10
13秒前
康康发布了新的文献求助10
14秒前
好好的i完成签到,获得积分10
14秒前
李陌陌完成签到 ,获得积分10
15秒前
15秒前
17秒前
18秒前
FashionBoy应助zjh采纳,获得10
18秒前
顾矜应助Joy采纳,获得10
19秒前
苯二氮卓发布了新的文献求助10
20秒前
甜甜玫瑰应助plants采纳,获得10
21秒前
科研通AI2S应助耶耶采纳,获得10
22秒前
22秒前
SciGPT应助悦耳的语梦采纳,获得30
22秒前
追寻巨人发布了新的文献求助10
23秒前
Akim应助康康采纳,获得10
23秒前
LL完成签到,获得积分10
25秒前
最爱吃火锅完成签到,获得积分10
25秒前
买椟还珠发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186