已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Electrodialysis of Lithium Sulfate Solutions from Hydrometallurgical Recycling of Spent Lithium-Ion Batteries

电渗析 锂(药物) 硫酸盐 离子 化学 材料科学 无机化学 冶金 医学 生物化学 有机化学 内分泌学
作者
Jiyong Zhu,Dongxin Kang,Joey Chung‐Yen Jung,Pang‐Chieh Sui
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (25): 1355-1355 被引量:1
标识
DOI:10.1149/ma2023-02251355mtgabs
摘要

Recycling lithium-ion battery materials is a crucial step to achieving a circular economy. A hydrometallurgical recycling process of spent lithium-ion battery materials involves leaching by acids and precipitation by bases. A large amount of Li 2 SO 4 leachate solution is generated at the end of the recycling process. Such Li 2 SO 4 solution can be separated by electrodialysis (ED) to form H 2 SO 4 and LiOH solutions, which are reused for leaching and precipitation, respectively, making the recycling a closed-loop process. In this study, an ‘electrodialysis stack constructed with bipolar membranes’ (EDBM) is built with repetitive unit cells consisting of a bipolar membrane, anion exchange membrane (AEM), and cation exchange membrane (CEM), see Fig. 1(a). The effective area for each membrane is 121.8 cm 2 (70mm×174mm). The gap between these membranes is 0.8mm, with a mesh inserted to allow flow mixing. All experiments were operated at constant current mode. The feed, acid, and base solutions were recirculated through their tanks at initial concentrations of 1.1, 0.1, and 0.1 mol/L. The ion concentrations of the solutions were measured with Inductively coupled plasma mass spectrometry periodically. The weight and the pH value of the solution tanks were also recorded. The trend of concentration variations of the present stack with up to 6 cell pairs is found to be consistent with that observed with a three-compartment configuration in our previous study [1]. The concentration of H 2 SO 4 increases with time linearly, whereas that of LiOH levels off due to a significant electro-osmosis that drags water through the CEM into the concentrate channel. The present setup differs from the three-compartment design in the bipolar membrane, which splits water to produce H + and OH - at the internal interface, eliminating the formation of bubbly flows in the unit cell. It is found that the voltage loss across the bipolar membrane ca. 1V accounts for a major part of the unit cell of about 1.27V. The effects of current density, number of cell pairs, and flow rates on the overall stack performance are investigated. Increasing the stack current density accelerates the separation process at the cost of higher voltage losses. It is found that increasing the number of cell pairs can improve the overall production efficiency and reduce energy consumption per cell pair. For instance, at 800 A/m 2 , the specific energy consumption for LiOH production is reduced to 3.40 kWh/kg with five cell pairs versus 5.83 kWh/kg with two cell pairs. It is also found that increasing the solution flow rate can result into the increase of LiOH solution concentration, ion recovery rate, and current efficiency (Fig. 1b), although the impact of flow rate is low. A small EDBM stack is constructed and tested for Li 2 SO 4 separation in the present study. This work demonstrates that EDBM can be a simple and energy-saving alternative to the current chemical precipitation method to produce LiOH from Li 2 SO 4 . The present study provides new insights into optimal operation and design for Li 2 SO 4 EDBM. The findings are helpful in determining how the stack can be scaled up for practical application. Furthermore, a 2D multiphysics model is currently under development to elucidate the coupled transport processes within the unit cell. The model will be validated with experimental data of the present setup. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CQ发布了新的文献求助10
2秒前
wswswsws给shilong.yang的求助进行了留言
3秒前
田様应助来之若曦采纳,获得10
3秒前
4秒前
ct发布了新的文献求助10
4秒前
Owen应助AAAA采纳,获得10
6秒前
呼呼发布了新的文献求助10
7秒前
7秒前
wade2016发布了新的文献求助10
8秒前
11秒前
科研通AI6应助呆梨医生采纳,获得10
12秒前
FEOROCHA关注了科研通微信公众号
14秒前
15秒前
15秒前
彬彬发布了新的文献求助10
15秒前
完美世界应助HL采纳,获得10
15秒前
不打地洞的土拨鼠完成签到,获得积分10
16秒前
我必中完成签到,获得积分10
18秒前
乐观城发布了新的文献求助10
19秒前
尾状叶完成签到 ,获得积分10
20秒前
21秒前
21秒前
21秒前
24秒前
sinohan发布了新的文献求助10
25秒前
26秒前
27秒前
vinh发布了新的文献求助10
27秒前
风中剑魅发布了新的文献求助10
27秒前
天天快乐应助彬彬采纳,获得10
28秒前
28秒前
顾矜应助高兴的安荷采纳,获得10
29秒前
AYJ完成签到,获得积分10
29秒前
万能图书馆应助心如止水采纳,获得10
31秒前
英俊的铭应助zhijianzhe采纳,获得10
31秒前
肖肖肖完成签到 ,获得积分10
32秒前
pangrx发布了新的文献求助10
33秒前
33秒前
later发布了新的文献求助10
34秒前
MOTOMORI发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934842
求助须知:如何正确求助?哪些是违规求助? 4202497
关于积分的说明 13057826
捐赠科研通 3976988
什么是DOI,文献DOI怎么找? 2179338
邀请新用户注册赠送积分活动 1195492
关于科研通互助平台的介绍 1106860