Electrodialysis of Lithium Sulfate Solutions from Hydrometallurgical Recycling of Spent Lithium-Ion Batteries

电渗析 锂(药物) 硫酸盐 离子 化学 材料科学 无机化学 冶金 生物化学 医学 内分泌学 有机化学
作者
Jiyong Zhu,Dongxin Kang,Joey Chung‐Yen Jung,Pang‐Chieh Sui
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (25): 1355-1355 被引量:1
标识
DOI:10.1149/ma2023-02251355mtgabs
摘要

Recycling lithium-ion battery materials is a crucial step to achieving a circular economy. A hydrometallurgical recycling process of spent lithium-ion battery materials involves leaching by acids and precipitation by bases. A large amount of Li 2 SO 4 leachate solution is generated at the end of the recycling process. Such Li 2 SO 4 solution can be separated by electrodialysis (ED) to form H 2 SO 4 and LiOH solutions, which are reused for leaching and precipitation, respectively, making the recycling a closed-loop process. In this study, an ‘electrodialysis stack constructed with bipolar membranes’ (EDBM) is built with repetitive unit cells consisting of a bipolar membrane, anion exchange membrane (AEM), and cation exchange membrane (CEM), see Fig. 1(a). The effective area for each membrane is 121.8 cm 2 (70mm×174mm). The gap between these membranes is 0.8mm, with a mesh inserted to allow flow mixing. All experiments were operated at constant current mode. The feed, acid, and base solutions were recirculated through their tanks at initial concentrations of 1.1, 0.1, and 0.1 mol/L. The ion concentrations of the solutions were measured with Inductively coupled plasma mass spectrometry periodically. The weight and the pH value of the solution tanks were also recorded. The trend of concentration variations of the present stack with up to 6 cell pairs is found to be consistent with that observed with a three-compartment configuration in our previous study [1]. The concentration of H 2 SO 4 increases with time linearly, whereas that of LiOH levels off due to a significant electro-osmosis that drags water through the CEM into the concentrate channel. The present setup differs from the three-compartment design in the bipolar membrane, which splits water to produce H + and OH - at the internal interface, eliminating the formation of bubbly flows in the unit cell. It is found that the voltage loss across the bipolar membrane ca. 1V accounts for a major part of the unit cell of about 1.27V. The effects of current density, number of cell pairs, and flow rates on the overall stack performance are investigated. Increasing the stack current density accelerates the separation process at the cost of higher voltage losses. It is found that increasing the number of cell pairs can improve the overall production efficiency and reduce energy consumption per cell pair. For instance, at 800 A/m 2 , the specific energy consumption for LiOH production is reduced to 3.40 kWh/kg with five cell pairs versus 5.83 kWh/kg with two cell pairs. It is also found that increasing the solution flow rate can result into the increase of LiOH solution concentration, ion recovery rate, and current efficiency (Fig. 1b), although the impact of flow rate is low. A small EDBM stack is constructed and tested for Li 2 SO 4 separation in the present study. This work demonstrates that EDBM can be a simple and energy-saving alternative to the current chemical precipitation method to produce LiOH from Li 2 SO 4 . The present study provides new insights into optimal operation and design for Li 2 SO 4 EDBM. The findings are helpful in determining how the stack can be scaled up for practical application. Furthermore, a 2D multiphysics model is currently under development to elucidate the coupled transport processes within the unit cell. The model will be validated with experimental data of the present setup. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Dobronx03发布了新的文献求助10
1秒前
1秒前
1秒前
zzmm完成签到,获得积分20
2秒前
TT发布了新的文献求助10
3秒前
4秒前
yuncong323发布了新的文献求助10
4秒前
4秒前
lokiuiw发布了新的文献求助10
4秒前
郑偏偏完成签到,获得积分10
5秒前
兼听则明完成签到,获得积分10
5秒前
勤劳白昼发布了新的文献求助10
5秒前
6秒前
reck发布了新的文献求助10
7秒前
坚强寻冬发布了新的文献求助10
8秒前
古的古的应助麦子采纳,获得10
8秒前
Dou发布了新的文献求助10
9秒前
张晓娜完成签到,获得积分10
9秒前
9秒前
仁爱的彤完成签到,获得积分20
9秒前
HC发布了新的文献求助10
9秒前
张岱帅z完成签到,获得积分10
10秒前
科目三应助含蓄访梦采纳,获得10
10秒前
英姑应助威武的帽子采纳,获得10
10秒前
情怀应助Lllll采纳,获得10
11秒前
孤独溪流应助领衔采纳,获得10
12秒前
完美世界应助海绵树采纳,获得10
13秒前
雪糕发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
共享精神应助。.。采纳,获得10
15秒前
16秒前
不配.应助linlin采纳,获得10
16秒前
小熊完成签到,获得积分10
16秒前
gyj1完成签到 ,获得积分20
17秒前
18秒前
天天快乐应助yf采纳,获得10
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411140
求助须知:如何正确求助?哪些是违规求助? 3014687
关于积分的说明 8864976
捐赠科研通 2702191
什么是DOI,文献DOI怎么找? 1481510
科研通“疑难数据库(出版商)”最低求助积分说明 684873
邀请新用户注册赠送积分活动 679377