Electrodialysis of Lithium Sulfate Solutions from Hydrometallurgical Recycling of Spent Lithium-Ion Batteries

电渗析 锂(药物) 硫酸盐 离子 化学 材料科学 无机化学 冶金 生物化学 医学 内分泌学 有机化学
作者
Jiyong Zhu,Dongxin Kang,Joey Chung‐Yen Jung,Pang‐Chieh Sui
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (25): 1355-1355 被引量:1
标识
DOI:10.1149/ma2023-02251355mtgabs
摘要

Recycling lithium-ion battery materials is a crucial step to achieving a circular economy. A hydrometallurgical recycling process of spent lithium-ion battery materials involves leaching by acids and precipitation by bases. A large amount of Li 2 SO 4 leachate solution is generated at the end of the recycling process. Such Li 2 SO 4 solution can be separated by electrodialysis (ED) to form H 2 SO 4 and LiOH solutions, which are reused for leaching and precipitation, respectively, making the recycling a closed-loop process. In this study, an ‘electrodialysis stack constructed with bipolar membranes’ (EDBM) is built with repetitive unit cells consisting of a bipolar membrane, anion exchange membrane (AEM), and cation exchange membrane (CEM), see Fig. 1(a). The effective area for each membrane is 121.8 cm 2 (70mm×174mm). The gap between these membranes is 0.8mm, with a mesh inserted to allow flow mixing. All experiments were operated at constant current mode. The feed, acid, and base solutions were recirculated through their tanks at initial concentrations of 1.1, 0.1, and 0.1 mol/L. The ion concentrations of the solutions were measured with Inductively coupled plasma mass spectrometry periodically. The weight and the pH value of the solution tanks were also recorded. The trend of concentration variations of the present stack with up to 6 cell pairs is found to be consistent with that observed with a three-compartment configuration in our previous study [1]. The concentration of H 2 SO 4 increases with time linearly, whereas that of LiOH levels off due to a significant electro-osmosis that drags water through the CEM into the concentrate channel. The present setup differs from the three-compartment design in the bipolar membrane, which splits water to produce H + and OH - at the internal interface, eliminating the formation of bubbly flows in the unit cell. It is found that the voltage loss across the bipolar membrane ca. 1V accounts for a major part of the unit cell of about 1.27V. The effects of current density, number of cell pairs, and flow rates on the overall stack performance are investigated. Increasing the stack current density accelerates the separation process at the cost of higher voltage losses. It is found that increasing the number of cell pairs can improve the overall production efficiency and reduce energy consumption per cell pair. For instance, at 800 A/m 2 , the specific energy consumption for LiOH production is reduced to 3.40 kWh/kg with five cell pairs versus 5.83 kWh/kg with two cell pairs. It is also found that increasing the solution flow rate can result into the increase of LiOH solution concentration, ion recovery rate, and current efficiency (Fig. 1b), although the impact of flow rate is low. A small EDBM stack is constructed and tested for Li 2 SO 4 separation in the present study. This work demonstrates that EDBM can be a simple and energy-saving alternative to the current chemical precipitation method to produce LiOH from Li 2 SO 4 . The present study provides new insights into optimal operation and design for Li 2 SO 4 EDBM. The findings are helpful in determining how the stack can be scaled up for practical application. Furthermore, a 2D multiphysics model is currently under development to elucidate the coupled transport processes within the unit cell. The model will be validated with experimental data of the present setup. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
云轩发布了新的文献求助10
8秒前
陈秋发布了新的文献求助10
12秒前
合适醉蝶完成签到 ,获得积分10
13秒前
白瑾完成签到 ,获得积分10
16秒前
春春完成签到,获得积分10
21秒前
Miracle完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
ling_lz完成签到,获得积分10
23秒前
ksl完成签到 ,获得积分10
24秒前
WXF完成签到 ,获得积分10
24秒前
虚心的幻梅完成签到 ,获得积分10
29秒前
mzm完成签到 ,获得积分10
30秒前
雨城完成签到 ,获得积分10
32秒前
星辰大海应助tuyfytjt采纳,获得10
33秒前
CooL完成签到 ,获得积分0
35秒前
量子星尘发布了新的文献求助10
39秒前
香蕉觅云应助zjq采纳,获得10
40秒前
41秒前
手帕很忙完成签到,获得积分10
42秒前
牛马完成签到 ,获得积分10
43秒前
tuyfytjt发布了新的文献求助10
47秒前
49秒前
蓝意完成签到,获得积分0
50秒前
zjq完成签到,获得积分10
52秒前
米鼓完成签到 ,获得积分10
56秒前
活泼的寒安完成签到 ,获得积分10
56秒前
zjq发布了新的文献求助10
56秒前
tuyfytjt完成签到,获得积分10
57秒前
易水完成签到 ,获得积分10
59秒前
1分钟前
落霞与孤鹜齐飞完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Jzhaoc580完成签到 ,获得积分10
1分钟前
清秀的小刺猬应助G18960采纳,获得10
1分钟前
Song完成签到 ,获得积分10
1分钟前
realityjunky完成签到,获得积分10
1分钟前
跳跃的鹏飞完成签到 ,获得积分0
1分钟前
蓝天应助陈秋采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645043
求助须知:如何正确求助?哪些是违规求助? 4767471
关于积分的说明 15026211
捐赠科研通 4803454
什么是DOI,文献DOI怎么找? 2568312
邀请新用户注册赠送积分活动 1525684
关于科研通互助平台的介绍 1485247