Tailoring codirectional Zn2+ pathways with biomaterials for advanced hydrogel electrolytes in High-Performance zinc metal batteries

电解质 金属 材料科学 化学工程 化学 纳米技术 冶金 电极 工程类 物理化学
作者
Wenhao Cai,Xuzi Zhang,Ge Li,Lingyun Chen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:: 149390-149390
标识
DOI:10.1016/j.cej.2024.149390
摘要

Rechargeable Zinc metal batteries have emerged as promising next-generation energy storage devices, attributed to their affordability, abundant availability, and high safety profile. However, aqueous Zinc anodes encounter challenges such as dendrite formation and electrolyte corrosion. This study addresses these challenges by introducing a biopolymer-based hydrogel electrolyte. The electrolyte is a gelatin (G) hydrogel, enriched with x% β-cyclodextrin (D) grafted onto chitosan (C), designated as G(DC)x. It ensures efficient and uniform Zn2+ ion transport through ionic channels to the zinc anode surface, facilitating the formation of parallel, densely arrayed Zn platelets on the anode. This arrangement minimizes the electrolyte-zinc interface area, mitigating interfacial side reactions and preventing dead zinc formation. The enhanced gelatin network endows the hydrogel electrolyte with considerable mechanical strength (1.49 MPa) and extensive stretchability (400 %), effectively inhibiting dendrite growth and penetration. Additionally, the electrolyte demonstrates excellent ionic conductivity at 24.89 mS cm−1 and a notable transference number of 0.49, synergistically improving the zinc anode's cycling reversibility and lifespan. Symmetric cells using G(DC)2 electrolytes exhibit remarkable cycling stability, exceeding 1200 h at 1 mA cm−2/1 mA h cm−2. Zn-I2 full cells with G(DC)2 hydrogel electrolyte show superior cycling performance, maintaining over 300 cycles at 0.1 A g−1 while retaining excellent mechanical properties. The hydrogel electrolytes, degrading by 85 % in weight within 28 days, also exhibit excellent biodegradability in soil. Consequently, these renewable and biodegradable G(DC)x electrolytes present a viable alternative to liquid electrolytes, paving the way for safer, more stable, and eco-friendly zinc metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助时尚的青丝采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
爽o发布了新的文献求助10
5秒前
6秒前
庄庄应助vv采纳,获得20
6秒前
樱_花qxy发布了新的文献求助10
6秒前
gogogo发布了新的文献求助10
7秒前
钦川发布了新的文献求助10
7秒前
7秒前
坚强白凝完成签到,获得积分10
7秒前
风的翅膀应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
风的翅膀应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
风的翅膀应助科研通管家采纳,获得10
8秒前
8秒前
李龙波完成签到,获得积分10
9秒前
lwj完成签到,获得积分10
10秒前
xixihaha发布了新的文献求助10
11秒前
拉拉发布了新的文献求助10
13秒前
王圈关注了科研通微信公众号
14秒前
LiuXianBao完成签到,获得积分10
14秒前
酷酷半芹发布了新的文献求助10
15秒前
科研通AI2S应助大壮采纳,获得30
15秒前
16秒前
LiuXianBao发布了新的文献求助10
18秒前
酷波er应助lewisll采纳,获得10
18秒前
www完成签到,获得积分20
20秒前
21秒前
www发布了新的文献求助10
24秒前
笨笨青筠发布了新的文献求助10
30秒前
高分求助中
Handbook of Fuel Cells, 6 Volume Set 1666
Interaction Effects in Linear and Generalized Linear Models: Examples and Applications Using Stata® 1000
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2867761
求助须知:如何正确求助?哪些是违规求助? 2474737
关于积分的说明 6710014
捐赠科研通 2163262
什么是DOI,文献DOI怎么找? 1149355
版权声明 585523
科研通“疑难数据库(出版商)”最低求助积分说明 564353