A physics-informed long short-term memory (LSTM) model for estimating ammonia emissions from dairy manure during storage

肥料 环境科学 尿素氨挥发 农业工程 计算机科学 工程类 化学 农学 生物 有机化学
作者
Rana A. Genedy,Matthias Chung,Julie Shortridge,Jactone Arogo Ogejo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 168885-168885 被引量:3
标识
DOI:10.1016/j.scitotenv.2023.168885
摘要

Manure management on dairy farms impacts how farmers maximize its value as fertilizer, reduce operating costs, and minimize environmental pollution potential. A persistent challenge on many farms is minimizing ammonia losses through volatilization during storage to maintain manure nitrogen content. Knowing the quantities of emitted pollutants is at the core of designing and improving mitigation strategies for livestock operations. Although process-based models have improved the accuracy of estimating ammonia emissions, complex systems such as manure storage still need to be solved because some underlying science still needs work. This study presents a novel physics-informed long short-term memory (PI-LSTM) modeling approach combining traditional process-based with recurrent neural networks to estimate ammonia loss from dairy manure during storage. The method entails inverse modeling to optimize hyperparameters to improve the accuracy of estimating physicochemical properties pertinent to ammonia's transport and surface emissions. The study used open data sets from two on-farm studies on liquid dairy manure storage in Switzerland and Indiana, U.S.A. The root mean square errors were 1.51 g m−2 h−1 for the PI-LSTM model, 3.01 g m−2 h−1 for the base compartmental process-based (Base-CPBM) model, and 2.17 g m−2 h−1 for the hyperparameter-tuned compartmental process-based (HT-CPBM) model. In addition, the PI-LSTM model outperformed the Base-CPBM and the HT-CPBM models by 20 to 80 % during summer and spring, when most annual ammonia emissions occur. The study demonstrated that incorporating physical knowledge into machine learning models improves generalization accuracy. The outcomes of this study provide the scientific basis to improve policymaking decisions and the design of suitable on-farm strategies to minimize manure nutrient losses on dairy farms during storage periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助泯珉采纳,获得10
1秒前
1秒前
852应助aixue采纳,获得10
1秒前
脑洞疼应助盖斯的可言采纳,获得10
1秒前
xhsz1111发布了新的文献求助10
2秒前
笨笨松发布了新的文献求助10
2秒前
wanci应助田田采纳,获得30
2秒前
淡定成风发布了新的文献求助10
3秒前
苏卿应助成就紫真采纳,获得10
4秒前
夏尔完成签到,获得积分10
4秒前
倦梦还完成签到,获得积分10
4秒前
Xiaohu完成签到,获得积分10
5秒前
6秒前
6秒前
jianxin发布了新的文献求助10
6秒前
热心路人应助等待的觅珍采纳,获得200
6秒前
小黑哥完成签到,获得积分20
7秒前
科研通AI5应助冷酷沛柔采纳,获得10
7秒前
忐忑的骁完成签到,获得积分20
7秒前
7秒前
xxr关注了科研通微信公众号
7秒前
9秒前
9秒前
10秒前
10秒前
小蘑菇应助小黑哥采纳,获得10
11秒前
周小笛完成签到 ,获得积分10
13秒前
Summer发布了新的文献求助10
13秒前
13秒前
13秒前
隐形曼青应助Cymatics采纳,获得10
13秒前
Abi发布了新的文献求助10
13秒前
xy0306发布了新的文献求助10
14秒前
ll完成签到 ,获得积分10
15秒前
15秒前
完美世界应助忐忑的骁采纳,获得10
15秒前
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564065
求助须知:如何正确求助?哪些是违规求助? 3137276
关于积分的说明 9421653
捐赠科研通 2837658
什么是DOI,文献DOI怎么找? 1559942
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717215