On Synthesis and Electrochemical Performance of Na4Fe3(PO4)2(P2O7) Cathode for Sodium-Ion Batteries

电化学 阴极 材料科学 分析化学(期刊) 化学 电极 物理化学 冶金 色谱法
作者
Yaprak Subaşı,Haidong Liu,Reza Younesi
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (4): 798-798
标识
DOI:10.1149/ma2023-024798mtgabs
摘要

Developing cost-effective and large-scale energy storage systems (ESSs) has been an important topic over the past years in order to implement efficient utilization of renewable electricity generated from sources like solar, wind, geothermal and tidal energy (1). Since the commercialization in 1991, lithium-ion batteries (LIBs) have been widely used in portable electronics, electric vehicles (EVs), and energy storage devices (2). However, there is an increase in demand for alternative energy sources based on abundant and low-cost materials due to the limited reserves and high costs of lithium compounds. In this context, sodium-ion batteries (SIBs) have received great attention because of their similarities to LIBs and the large abundance (2.3%) on earth, and low cost of sodium compounds (3). However, the energy density of most SIBs are lower that of LIBs, primarily due to the larger ionic radius and higher mass of Na + ion compared to Li + ions, as well as the lower electrochemical potential of sodium cells relative to lithium cells (4). Many efforts have been devoted to the development of high-performance cathode materials, including layered transition metal oxides, Prussian blue analogues (PBAs), sulfates, phosphates and pyrophosphates. Polyanionic compounds, in particular, are considered as promising cathode materials with regard to their high working voltage, structural stability, thermal stability and small volume change upon cycling (5). For example, iron phosphate-based materials have gained attention inspired by LiFePO 4 for LIBs. However, the olivine NaFePO 4 is predominantly produced through an ion exchange process (6). The maricite NaFePO 4 is electrochemically inactive due to the lack of Na migration channels within its structure. On the other hand, Na 2 FeP 2 O 7 shows long cycle life and structural stability with a low capacity because of its single electron diffusion process. Na 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ) (NFPP) combines the benefits of both phosphate and pyrophosphate, offering potential advantages such as low-cost, environmental friendliness, high average working voltage (~ 3.1 V vs. Na + /Na), favorable theoretical capacity (129 mAh g -1 ), low volume change (< 4%) due to its open framework composed of [Fe 3 P 2 O 13 ] layers connected by (P 2 O 7 ) 4- groups with 3D ion channels and low activation barriers for Na + transport as well as structural and thermal stability. However, NFPP is susceptible to the formation of impurities such as NaFePO 4 and Na 2 FeP 2 O 7 , which can arise from the synthesis temperature and adopted reaction materials, potentially restricting the electrochemical performance of NFPP. Additionally, the inherent insulating characteristics of the (PO 4 ) 3- group in NFPP may result in reduced electronic conductivity and slow ion diffusion, which hinders its practical application (7, 8). Therefore, various strategies have been developed to enhance conductivity such as nanosizing, carbon coating and metal ion doping. NFPP can be synthesized by various methods like solid-state, sol-gel, spray drying and combustion. In this study, we present our results on employing both sol–gel and combustion methods with distinct synthesis parameters. The structure, morphology and particle size of NFPP are characterized by X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) techniques. The electrochemical performance of NFPP cathodes is investigated in both half- and full-cells via galvanostatic charge-discharge cycling tests. Keywords: sodium-ion batteries, cathode material, iron-based mixed phosphate, sol-gel synthesis, large scale M. Armand and J. M. Tarascon, Nature , 451 , 652 (2008). J. B. Goodenough and K.-S. Park, Journal of the American Chemical Society , 135 , 1167 (2013). B. Dunn, H. Kamath and J.-M. Tarascon, Science , 334 , 928 (2011). M. H. Han, E. Gonzalo, G. Singh and T. Rojo, Energy & Environmental Science , 8 , 81 (2015). P. Barpanda, L. Lander, S.-i. Nishimura and A. Yamada, Advanced Energy Materials , 8 , 1703055 (2018). K. T. Lee, T. N. Ramesh, F. Nan, G. Botton and L. F. Nazar, Chemistry of Materials , 23 , 3593 (2011). X. Wu, G. Zhong and Y. Yang, Journal of Power Sources , 327 , 666 (2016). H. Kim, I. Park, S. Lee, H. Kim, K.-Y. Park, Y.-U. Park, H. Kim, J. Kim, H.-D. Lim, W.-S. Yoon and K. Kang, Chemistry of Materials , 25 , 3614 (2013).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好想睡觉完成签到 ,获得积分10
刚刚
刚刚
舒适的万言发布了新的文献求助100
1秒前
1秒前
戴士杰686发布了新的文献求助30
2秒前
奋斗的夜山完成签到 ,获得积分10
4秒前
4秒前
maomao完成签到,获得积分10
5秒前
FashionBoy应助杨怡宣采纳,获得30
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
感动的梦柏完成签到,获得积分10
7秒前
南小槿发布了新的文献求助10
7秒前
波特卡斯D艾斯完成签到 ,获得积分10
7秒前
8秒前
11秒前
全追命发布了新的文献求助10
12秒前
12秒前
南小槿完成签到,获得积分10
12秒前
Aurora发布了新的文献求助10
12秒前
13秒前
linkman发布了新的文献求助30
14秒前
天天快乐应助科研爱好者采纳,获得10
15秒前
XXX完成签到 ,获得积分10
15秒前
迅速谷云完成签到,获得积分10
16秒前
16秒前
田様应助黄健伟采纳,获得10
17秒前
老实的抽屉完成签到,获得积分10
18秒前
only完成签到,获得积分20
19秒前
19秒前
抽烟不完成签到 ,获得积分10
19秒前
kw完成签到 ,获得积分10
20秒前
SJD完成签到,获得积分0
22秒前
杨怡宣发布了新的文献求助30
22秒前
23秒前
23秒前
Alan完成签到,获得积分20
24秒前
深情安青应助wqq采纳,获得10
24秒前
面面发布了新的文献求助10
25秒前
科研顺利完成签到,获得积分10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160