Here, we demonstrate the selective cellobiose (building block of cellulose) photoreforming for gluconic acid and syngas co-production in acidic conditions by rationally designing a bifunctional polymeric carbon nitride (CN) with potassium/sulfur co-dopant. This heteroatomic doped CN photocatalyst possesses enhanced visible light absorption, higher charge separation efficiency than pristine CN. Under acidic conditions, cellobiose is not only more efficiently hydrolyzed into glucose but also promotes the syngas and gluconic acid production. Density functional theory (DFT) calculations reveal the favorable generation of •O2− during the photocatalytic reaction, which is essential for gluconic acid production. Consequently, the fine-designed photocatalyst presents excellent cellobiose conversion (>80%) and gluconic acid selectivity (>70%) together with the co-production of syngas (∼56 μmol g−1 h−1) under light illumination. The current work demonstrates the feasibility of biomass photoreforming with value-added chemicals and syngas co-production under mild condition.