A light weight multi-scale feature fusion steel surface defect detection model based on YOLOv8

曲面(拓扑) 融合 特征(语言学) 比例(比率) 材料科学 人工智能 计算机科学 模式识别(心理学) 数学 几何学 物理 哲学 语言学 量子力学
作者
Weining Xie,Xiaoyong Sun,Weifeng Ma
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055017-055017 被引量:8
标识
DOI:10.1088/1361-6501/ad296d
摘要

Abstract In industrial production, the steel surface may incur different defects owing to the influence of external factors, thereby affecting the performance of steel. With the increasing requirements for steel quality, achieving efficient detection of steel surface defects is a difficult problem that urgently needs to be solved. Traditional steel surface defect detection methods are limited by poor detection performance and slow detection speed. Therefore, a model named LMS-YOLO, based on YOLOv8, is proposed in this paper for achieving efficient steel surface defect detection. Firstly, in backbone, the light weight multi-scale mixed convolution (LMSMC) module is designed to fuse with C2f to obtain C2f_LMSMC, so as to extract the features of different scales for fusion and achieve the light weight of the network. Meanwhile, the proposed efficient global attention mechanism was added to backbone to enhance cross dimensional information interaction and feature extraction capabilities, and to achieve a more efficient attention mechanism. In neck, using channel tuning to achieve better cross scale fusion in BiFPN. Finally, the model uses three independent decoupled heads for regression and classification, and replaces CIoU with NWD as the regression loss to enhance the effect of detecting small scale defects. The experimental results showed that LMS-YOLO achieved 81.1 mAP and 61.3 FPS on NEU-DET, 80.5 mAP and 61.3 FPS on GC10-DET, respectively. The mAP increased by 2.8 and 4.7 compared to YOLOv8, and decreased by 17.4% in floating point operations (GFLOPs) and 34.2% in parameters (Params), which indicates that the model proposed in this paper has a better comprehensive performance compared with other methods in steel surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cm发布了新的文献求助30
1秒前
小蘑菇应助和谐的阁采纳,获得30
5秒前
5秒前
993完成签到,获得积分20
5秒前
7秒前
7秒前
cm发布了新的文献求助30
9秒前
9秒前
深情安青应助忧虑的访梦采纳,获得10
9秒前
11秒前
liangkai发布了新的文献求助10
11秒前
11秒前
lily发布了新的文献求助10
12秒前
CL发布了新的文献求助10
12秒前
13秒前
852应助嘟嘟采纳,获得10
13秒前
zxw完成签到,获得积分10
14秒前
14秒前
cdh1994完成签到,获得积分0
15秒前
正直草丛发布了新的文献求助10
15秒前
16秒前
oh发布了新的文献求助10
17秒前
18秒前
FashionBoy应助顾北采纳,获得10
18秒前
annie发布了新的文献求助20
18秒前
18秒前
cm发布了新的文献求助10
18秒前
打打应助njusdf采纳,获得10
20秒前
安静碧灵完成签到 ,获得积分10
21秒前
liuHX完成签到,获得积分10
21秒前
zxw发布了新的文献求助10
21秒前
daiweiwei发布了新的文献求助10
21秒前
23秒前
我是老大应助annie采纳,获得10
23秒前
Why发布了新的文献求助10
24秒前
小北完成签到 ,获得积分10
24秒前
柚子完成签到,获得积分10
25秒前
zhehuai完成签到,获得积分10
25秒前
赘婿应助一一采纳,获得10
26秒前
liangkai完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136000
求助须知:如何正确求助?哪些是违规求助? 2786769
关于积分的说明 7779614
捐赠科研通 2443019
什么是DOI,文献DOI怎么找? 1298798
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870