已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A light weight multi-scale feature fusion steel surface defect detection model based on YOLOv8

曲面(拓扑) 融合 特征(语言学) 比例(比率) 材料科学 人工智能 计算机科学 模式识别(心理学) 数学 几何学 物理 哲学 语言学 量子力学
作者
Weining Xie,Xiaoyong Sun,Weifeng Ma
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055017-055017 被引量:22
标识
DOI:10.1088/1361-6501/ad296d
摘要

Abstract In industrial production, the steel surface may incur different defects owing to the influence of external factors, thereby affecting the performance of steel. With the increasing requirements for steel quality, achieving efficient detection of steel surface defects is a difficult problem that urgently needs to be solved. Traditional steel surface defect detection methods are limited by poor detection performance and slow detection speed. Therefore, a model named LMS-YOLO, based on YOLOv8, is proposed in this paper for achieving efficient steel surface defect detection. Firstly, in backbone, the light weight multi-scale mixed convolution (LMSMC) module is designed to fuse with C2f to obtain C2f_LMSMC, so as to extract the features of different scales for fusion and achieve the light weight of the network. Meanwhile, the proposed efficient global attention mechanism was added to backbone to enhance cross dimensional information interaction and feature extraction capabilities, and to achieve a more efficient attention mechanism. In neck, using channel tuning to achieve better cross scale fusion in BiFPN. Finally, the model uses three independent decoupled heads for regression and classification, and replaces CIoU with NWD as the regression loss to enhance the effect of detecting small scale defects. The experimental results showed that LMS-YOLO achieved 81.1 mAP and 61.3 FPS on NEU-DET, 80.5 mAP and 61.3 FPS on GC10-DET, respectively. The mAP increased by 2.8 and 4.7 compared to YOLOv8, and decreased by 17.4% in floating point operations (GFLOPs) and 34.2% in parameters (Params), which indicates that the model proposed in this paper has a better comprehensive performance compared with other methods in steel surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lancet发布了新的文献求助10
刚刚
hczx完成签到,获得积分10
1秒前
愤怒的如曼关注了科研通微信公众号
2秒前
5秒前
悦耳天曼发布了新的文献求助10
7秒前
9秒前
9秒前
11秒前
缥缈斌发布了新的文献求助10
13秒前
SciGPT应助B站萧亚轩采纳,获得10
13秒前
14秒前
15秒前
SSS水鱼发布了新的文献求助10
18秒前
20秒前
缥缈斌完成签到 ,获得积分10
22秒前
赵乂完成签到,获得积分10
22秒前
顾矜应助cherish采纳,获得10
23秒前
几两发布了新的文献求助100
24秒前
25秒前
29秒前
Summering666完成签到,获得积分10
32秒前
32秒前
32秒前
34秒前
Lancet完成签到,获得积分10
37秒前
二小完成签到 ,获得积分10
37秒前
x111发布了新的文献求助10
38秒前
赵乂发布了新的文献求助10
38秒前
噔噔蹬完成签到 ,获得积分10
39秒前
友好的半仙完成签到,获得积分10
42秒前
大模型应助B站萧亚轩采纳,获得10
43秒前
jhxie完成签到,获得积分10
43秒前
43秒前
WXX完成签到,获得积分20
45秒前
自然的听云完成签到,获得积分10
46秒前
cureall应助某慧采纳,获得20
46秒前
尼龙niuniu完成签到,获得积分10
47秒前
47秒前
科研通AI2S应助11采纳,获得10
49秒前
Akihi发布了新的文献求助10
49秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959835
求助须知:如何正确求助?哪些是违规求助? 3506093
关于积分的说明 11127809
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789445
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021