A light weight multi-scale feature fusion steel surface defect detection model based on YOLOv8

曲面(拓扑) 融合 特征(语言学) 比例(比率) 材料科学 人工智能 计算机科学 模式识别(心理学) 数学 几何学 物理 语言学 量子力学 哲学
作者
Weining Xie,Xiaoyong Sun,Weifeng Ma
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055017-055017 被引量:22
标识
DOI:10.1088/1361-6501/ad296d
摘要

Abstract In industrial production, the steel surface may incur different defects owing to the influence of external factors, thereby affecting the performance of steel. With the increasing requirements for steel quality, achieving efficient detection of steel surface defects is a difficult problem that urgently needs to be solved. Traditional steel surface defect detection methods are limited by poor detection performance and slow detection speed. Therefore, a model named LMS-YOLO, based on YOLOv8, is proposed in this paper for achieving efficient steel surface defect detection. Firstly, in backbone, the light weight multi-scale mixed convolution (LMSMC) module is designed to fuse with C2f to obtain C2f_LMSMC, so as to extract the features of different scales for fusion and achieve the light weight of the network. Meanwhile, the proposed efficient global attention mechanism was added to backbone to enhance cross dimensional information interaction and feature extraction capabilities, and to achieve a more efficient attention mechanism. In neck, using channel tuning to achieve better cross scale fusion in BiFPN. Finally, the model uses three independent decoupled heads for regression and classification, and replaces CIoU with NWD as the regression loss to enhance the effect of detecting small scale defects. The experimental results showed that LMS-YOLO achieved 81.1 mAP and 61.3 FPS on NEU-DET, 80.5 mAP and 61.3 FPS on GC10-DET, respectively. The mAP increased by 2.8 and 4.7 compared to YOLOv8, and decreased by 17.4% in floating point operations (GFLOPs) and 34.2% in parameters (Params), which indicates that the model proposed in this paper has a better comprehensive performance compared with other methods in steel surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hgybdo发布了新的文献求助10
2秒前
3秒前
冉冰完成签到,获得积分10
3秒前
3秒前
lf发布了新的文献求助10
4秒前
乐观迎荷完成签到,获得积分10
5秒前
Hysen_L完成签到,获得积分10
6秒前
无聊的盼易完成签到,获得积分10
7秒前
WWW完成签到,获得积分10
9秒前
hilm应助阿甘采纳,获得10
9秒前
高中生完成签到,获得积分10
10秒前
11秒前
冉冰发布了新的文献求助10
11秒前
13秒前
北月南弦完成签到 ,获得积分10
15秒前
cfer完成签到,获得积分10
16秒前
可爱的函函应助研友_LpQ3rn采纳,获得10
16秒前
TheSail发布了新的文献求助10
16秒前
17秒前
望星云发布了新的文献求助10
18秒前
吴小小完成签到,获得积分10
18秒前
18秒前
张逍遥发布了新的文献求助10
18秒前
20秒前
21秒前
123完成签到,获得积分10
21秒前
冷艳的寻冬完成签到 ,获得积分10
21秒前
22秒前
KAI完成签到 ,获得积分10
23秒前
23秒前
ll发布了新的文献求助10
25秒前
一号小玩家完成签到,获得积分10
26秒前
青菜发布了新的文献求助10
26秒前
Owen应助海贝采纳,获得10
27秒前
27秒前
彭于晏应助小曾采纳,获得10
28秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457501
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291930
捐赠科研通 4488544
什么是DOI,文献DOI怎么找? 2458577
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424244