AI-based differential diagnosis of dementia etiologies on multimodal data

痴呆 病因学 鉴别诊断 计算机科学 医学 人工智能 精神科 病理 疾病
作者
Chonghua Xue,Sahana S. Kowshik,Diala Lteif,Shreyas Puducheri,Varuna Jasodanand,Olivia T. Zhou,Anika S. Walia,Osman Berke Güney,J. Diana Zhang,Serena T. Pham,Artem Kaliaev,V. Carlota Andreu‐Arasa,Brigid Dwyer,Chad W. Farris,Honglin Hao,Sachin Kedar,Asim Mian,Daniel L. Murman,Sarah A. O’Shea,Aaron B. Paul
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2024.02.08.24302531
摘要

Abstract Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an AI model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51, 269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a micro-averaged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the micro-averaged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two cooccurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in various clinical settings and drug trials, with promising implications for person-level management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
wuwuhu发布了新的文献求助10
2秒前
6161发布了新的文献求助10
3秒前
李健应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
阿湫完成签到 ,获得积分10
4秒前
6秒前
6秒前
ASYA发布了新的文献求助10
7秒前
YAMI发布了新的文献求助10
7秒前
希望天下0贩的0应助wuwuhu采纳,获得10
8秒前
8秒前
憨憨芸发布了新的文献求助10
9秒前
zz发布了新的文献求助10
10秒前
11秒前
zw完成签到,获得积分20
11秒前
梁小伟给梁小伟的求助进行了留言
13秒前
研友_892kOL完成签到,获得积分10
13秒前
林见清完成签到,获得积分10
14秒前
科研通AI2S应助2205277821采纳,获得10
14秒前
15秒前
YAMI完成签到,获得积分10
15秒前
胖挺发布了新的文献求助10
15秒前
evelsing发布了新的文献求助10
15秒前
li完成签到,获得积分10
17秒前
李爱国应助wqq采纳,获得10
18秒前
18秒前
18秒前
憨憨芸完成签到,获得积分10
19秒前
zhizhi发布了新的文献求助10
21秒前
6161完成签到,获得积分10
22秒前
23秒前
Lucas应助qi采纳,获得10
23秒前
老默发布了新的文献求助10
23秒前
ding应助evelsing采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182