AI-based differential diagnosis of dementia etiologies on multimodal data

痴呆 病因学 鉴别诊断 计算机科学 医学 人工智能 精神科 病理 疾病
作者
Chonghua Xue,Shreyas Kowshik,Diala Lteif,Shreyas Puducheri,Varuna Jasodanand,Olivia T. Zhou,Anika Walia,Osman Berke Güney,J. Diana Zhang,Serena T. Pham,Artem Kaliaev,V. Carlota Andreu‐Arasa,Brigid Dwyer,Chad W. Farris,Honglin Hao,Sachin Kedar,Asim Mian,Daniel L. Murman,Sarah A. O’Shea,Aaron B. Paul,Saurabh Rohatgi,Marie Saint‐Hilaire,E. Alton Sartor,Bindu N. Setty,Juan E. Small,Arun Swaminathan,Olga Taraschenko,Jing Yuan,Yan Zhou,Shuhan Zhu,Cody Karjadi,Ting Fang Alvin Ang,Sarah Adel Bargal,Bryan A. Plummer,Kathleen L. Poston,Meysam Ahangaran,Rhoda Au,Vijaya B. Kolachalama
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.02.08.24302531
摘要

Abstract Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an AI model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51, 269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a micro-averaged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the micro-averaged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two cooccurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in various clinical settings and drug trials, with promising implications for person-level management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴家小世界完成签到,获得积分10
刚刚
研友_8RaVBZ完成签到,获得积分10
刚刚
研友_VZG7GZ应助络桵采纳,获得10
刚刚
hull完成签到,获得积分10
1秒前
1秒前
Terry发布了新的文献求助10
2秒前
巅峰囚冰完成签到,获得积分10
3秒前
4秒前
上官若男应助单纯的巧荷采纳,获得10
4秒前
5秒前
斯文败类应助wkkky采纳,获得10
5秒前
6秒前
proton完成签到,获得积分10
6秒前
6秒前
星辰大海应助活泼的莹采纳,获得10
6秒前
zpp完成签到 ,获得积分10
6秒前
无敌幸运儿完成签到,获得积分10
7秒前
SciGPT应助露似珍珠月似弓采纳,获得10
8秒前
脑洞疼应助hmm采纳,获得10
8秒前
西陆完成签到,获得积分10
9秒前
jiangmingjiao完成签到,获得积分10
9秒前
大白牛完成签到,获得积分10
9秒前
jnjfn发布了新的文献求助10
10秒前
10秒前
长颈鹿完成签到,获得积分10
11秒前
纯真的中道完成签到,获得积分10
11秒前
11秒前
沫荔完成签到 ,获得积分10
12秒前
12秒前
jiangmingjiao发布了新的文献求助10
12秒前
乔修亚发布了新的文献求助20
13秒前
13秒前
13秒前
13秒前
14秒前
清脆的日记本完成签到,获得积分10
14秒前
14秒前
14秒前
英俊的铭应助DYW采纳,获得10
15秒前
一亿发布了新的文献求助10
15秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122356
求助须知:如何正确求助?哪些是违规求助? 2772858
关于积分的说明 7714795
捐赠科研通 2428308
什么是DOI,文献DOI怎么找? 1289700
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183