A novel performance degradation assessment method for rotating machinery based on the fault information and the dynamic simulation

计算机科学 降级(电信) 断层(地质) 可靠性工程 运动仿真 控制理论(社会学) 模拟 人工智能 工程类 电信 控制(管理) 地震学 地质学
作者
Jianqun Zhang,Qing Zhang,Xianrong Qin,Yuantao Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 066107-066107 被引量:2
标识
DOI:10.1088/1361-6501/ad2c51
摘要

Abstract The performance degradation assessment (PDA) of key components such as gears and rolling bearings is the core technology of prognostics and health management for rotating machinery. Most existing PDA methods may have two deficiencies: (1) the assessment indicator constructed does not consider capturing fault characteristics directly; (2) feature selection is generally based on the measured data of different fault levels, which is difficult to obtain in actual processes; moreover, the selection results lack universality and are difficult to extend to other equipment. To address these issues, this paper proposes a novel PDA method based on fault information and dynamic simulation. First, anomaly detection is performed using four well-known indicators in combination with Mahalanobis distance. Secondly, fault identification is performed using envelope spectrum analysis on anomaly signals to determine the fault type, e.g. gear fault or outer race fault. Thirdly, based on the fault type information, the candidate feature set including fault-domain indicators is selected based on the established dynamic simulation signals to obtain a preliminary assessment vector for the first stage. The stability of the fault domain indicators which capture fault characteristics directly is tested through actual measured normal data. It is used as the second stage of selecting to obtain the assessment vector. Finally, the PDA indicator is calculated based on the assessment vector and Mahalanobis distance. Four experiment case studies demonstrate the proposed PDA method can effectively isolate faults with different defect sizes as well as track the whole performance degradation. The above analysis indicates that the proposed PDA method is expected to be used for the actual rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助李海艳采纳,获得10
1秒前
1秒前
Pheonix1998完成签到,获得积分10
2秒前
7秒前
科研通AI6应助ZIS采纳,获得10
7秒前
Alina完成签到 ,获得积分10
10秒前
11秒前
简简单单完成签到,获得积分10
12秒前
12秒前
13秒前
陈爽er完成签到 ,获得积分10
13秒前
咸鱼打滚发布了新的文献求助10
17秒前
领导范儿应助清脆的迎松采纳,获得10
18秒前
angelalxj发布了新的文献求助10
18秒前
彭于晏应助zhenyu0430采纳,获得10
19秒前
19秒前
阳佟曼云完成签到,获得积分10
20秒前
蕴蝶发布了新的文献求助10
20秒前
zz完成签到 ,获得积分10
20秒前
Akim应助two采纳,获得20
22秒前
小鱼歪优发布了新的文献求助10
23秒前
加油少年完成签到,获得积分10
23秒前
CipherSage应助独指蜗牛采纳,获得30
23秒前
Jasper应助hoku采纳,获得10
23秒前
ZSZ完成签到,获得积分10
24秒前
maoer完成签到,获得积分10
24秒前
清脆的迎松完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
科研通AI2S应助蕴蝶采纳,获得10
29秒前
29秒前
许星意发布了新的文献求助10
30秒前
恸哭的千鸟完成签到,获得积分10
31秒前
推土机爱学习完成签到 ,获得积分10
31秒前
flawless完成签到,获得积分10
32秒前
sailingluwl完成签到,获得积分10
33秒前
老福贵儿完成签到,获得积分0
33秒前
33秒前
orixero应助大兵哥采纳,获得10
34秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225359
求助须知:如何正确求助?哪些是违规求助? 4397026
关于积分的说明 13685643
捐赠科研通 4261608
什么是DOI,文献DOI怎么找? 2338513
邀请新用户注册赠送积分活动 1335950
关于科研通互助平台的介绍 1291890