Distillation-Constrained Prototype Representation Network for Hyperspectral Image Incremental Classification

高光谱成像 计算机科学 判别式 人工智能 上下文图像分类 模式识别(心理学) 特征学习 图像(数学) 特征(语言学) 推论 机器学习 语言学 哲学
作者
Chunyan Yu,Xiaowen Zhao,Baoyu Gong,Yabin Hu,Meiping Song,Haoyang Yu,Chein‐I Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:11
标识
DOI:10.1109/tgrs.2024.3359629
摘要

Oriented to adaptive recognition of the new land-cover categories, incremental classification (IC) that aims to complete adaptive classification with continuous learning is urgent and crucial for hyperspectral image classification (HSIC). Nevertheless, deep-learning-based HSIC models adopted the learning paradigm with fixed classes yield unsatisfactory inference in the situation of IC due to the catastrophic forgetting problem. To eliminate the recognition gap and maintain the old knowledge during IC, in this paper, we propose a novel approach called the distillation-constrained prototype representation network (DCPRN) for hyperspectral image incremental classification (HSIIC). The primary goal of DCPRN is to enhance the discriminative capability for recognizing the original classes in HSIIC, while effectively integrating both the original and incremental knowledge to facilitate adaptive learning. Specifically, the proposed framework incorporates a prototype representation mechanism, which serves as a bridge for knowledge transfer and integration between the initial and incremental learning phases of HSIIC. Additionally, we present a dual knowledge distillation module in incremental learning, which integrates discriminative information at both the feature and decision level. In this way, the proposed mechanism enables flexible and dynamic adaptation to new classes and overcomes the limitations of fixed-category feature learning. Extensive experimental analysis conducted on three popular data sets validates the superiority of the proposed DCPRN method compared with other typical HSIIC approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董吧啦发布了新的文献求助10
1秒前
xtt发布了新的文献求助10
1秒前
Zx_1993应助明明ming999_采纳,获得20
1秒前
蓝冰完成签到,获得积分10
1秒前
呆呆要努力完成签到 ,获得积分10
2秒前
3秒前
3秒前
桐桐应助LSY采纳,获得10
3秒前
3秒前
桥豆麻袋完成签到,获得积分10
3秒前
超帅大米完成签到 ,获得积分10
4秒前
4秒前
dawei完成签到,获得积分20
4秒前
5秒前
5秒前
zhantianao完成签到,获得积分10
6秒前
飘逸果汁完成签到,获得积分10
6秒前
6秒前
拼搏草莓完成签到,获得积分10
6秒前
6秒前
浮游应助Pursuit采纳,获得30
7秒前
7秒前
xhsz1111完成签到 ,获得积分10
7秒前
公主完成签到,获得积分10
7秒前
8秒前
沐沐汐发布了新的文献求助10
8秒前
heli发布了新的文献求助10
8秒前
8秒前
黄桃完成签到,获得积分10
9秒前
要减肥翩跹完成签到 ,获得积分10
9秒前
吴乐盈发布了新的文献求助10
9秒前
9秒前
9秒前
魏林娟发布了新的文献求助10
9秒前
早早发布了新的文献求助10
10秒前
Hello应助不会找文献采纳,获得10
10秒前
许鑫蓁完成签到,获得积分10
10秒前
Zoe发布了新的文献求助10
11秒前
画画发布了新的文献求助10
11秒前
完美世界完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350956
求助须知:如何正确求助?哪些是违规求助? 4484183
关于积分的说明 13958360
捐赠科研通 4383653
什么是DOI,文献DOI怎么找? 2408548
邀请新用户注册赠送积分活动 1401137
关于科研通互助平台的介绍 1374584