Distillation-Constrained Prototype Representation Network for Hyperspectral Image Incremental Classification

高光谱成像 计算机科学 判别式 人工智能 上下文图像分类 模式识别(心理学) 特征学习 图像(数学) 特征(语言学) 推论 机器学习 语言学 哲学
作者
Chunyan Yu,Xiaowen Zhao,Baoyu Gong,Yabin Hu,Meiping Song,Haoyang Yu,Chein‐I Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:11
标识
DOI:10.1109/tgrs.2024.3359629
摘要

Oriented to adaptive recognition of the new land-cover categories, incremental classification (IC) that aims to complete adaptive classification with continuous learning is urgent and crucial for hyperspectral image classification (HSIC). Nevertheless, deep-learning-based HSIC models adopted the learning paradigm with fixed classes yield unsatisfactory inference in the situation of IC due to the catastrophic forgetting problem. To eliminate the recognition gap and maintain the old knowledge during IC, in this paper, we propose a novel approach called the distillation-constrained prototype representation network (DCPRN) for hyperspectral image incremental classification (HSIIC). The primary goal of DCPRN is to enhance the discriminative capability for recognizing the original classes in HSIIC, while effectively integrating both the original and incremental knowledge to facilitate adaptive learning. Specifically, the proposed framework incorporates a prototype representation mechanism, which serves as a bridge for knowledge transfer and integration between the initial and incremental learning phases of HSIIC. Additionally, we present a dual knowledge distillation module in incremental learning, which integrates discriminative information at both the feature and decision level. In this way, the proposed mechanism enables flexible and dynamic adaptation to new classes and overcomes the limitations of fixed-category feature learning. Extensive experimental analysis conducted on three popular data sets validates the superiority of the proposed DCPRN method compared with other typical HSIIC approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12321234完成签到,获得积分10
1秒前
wanci应助动听的薯条采纳,获得10
1秒前
天天快乐应助zjmsb采纳,获得10
1秒前
1秒前
chem完成签到,获得积分10
2秒前
Kuzu完成签到,获得积分10
2秒前
康康发布了新的文献求助10
3秒前
大模型应助aikeyan采纳,获得10
3秒前
弥生发布了新的文献求助20
5秒前
ding应助柒_l采纳,获得10
5秒前
6秒前
贪玩的访风完成签到 ,获得积分10
7秒前
8秒前
ZY完成签到,获得积分10
9秒前
能干的荆完成签到 ,获得积分10
12秒前
NexusExplorer应助啦啦啦采纳,获得10
13秒前
13秒前
糯米完成签到,获得积分10
13秒前
13秒前
andrele应助charles采纳,获得10
14秒前
领导范儿应助安静的幼旋采纳,获得10
16秒前
orixero应助Forest采纳,获得10
17秒前
17秒前
17秒前
ding应助糯米采纳,获得10
17秒前
qinshugg发布了新的文献求助30
18秒前
7ohnny完成签到,获得积分10
18秒前
CodeCraft应助shilong.yang采纳,获得10
20秒前
上官若男应助shilong.yang采纳,获得30
20秒前
华仔应助shilong.yang采纳,获得30
20秒前
研友_ngkyGn应助shilong.yang采纳,获得10
20秒前
20秒前
xx完成签到 ,获得积分10
21秒前
21秒前
211发布了新的文献求助10
21秒前
reliam发布了新的文献求助10
23秒前
安静静槐发布了新的文献求助10
25秒前
25秒前
思源应助211采纳,获得10
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719