Shadow backdoor attack: Multi-intensity backdoor attack against federated learning

后门 影子(心理学) 利用 计算机科学 计算机安全 模型攻击 心理学 心理治疗师
作者
Qixian Ren,Yu Zheng,Yang Liu,Yue Li,Jianfeng Ma
出处
期刊:Computers & Security [Elsevier]
卷期号:139: 103740-103740
标识
DOI:10.1016/j.cose.2024.103740
摘要

Federated learning systems enable data localization by aggregating model parameters from all parties for global model training, but they also expose new security threats due to their distributed learning approach and multi-party heterogeneous data distribution. Backdoor attacks exploit the inability of federated learning systems to audit client data, and have a huge advantage in injecting backdoor into global models by submitting poisoned model updates. That causes the global model to be backdoored after the aggregation model updates, leading to catastrophic model security problems. Current existing studies used a distributed strategy to deploy backdoor attack in federated learning, however, the attack persistence is not good enough. To achieve better attack performance, this paper proposes a novel backdoor attack method against federated learning systems, which we name Shadow Backdoor Attack (SBA). Our SBA method innovates on attack deployment and creatively introduces a new concept of Attacker Intensity, which distinguish the different roles of attackers in backdoor attack against federated learning. SBA implements attacks through a combination of different intensities attackers, which makes the sustained effect of the attack significantly improved compared with previous work. Several experiments demonstrate that SBA has a high attack success rate and more sustained attack effect. Moreover, we analyze the impact of trigger criteria in SBA and confirm the attack effectiveness of SBA against two robust FL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好地方发布了新的文献求助10
1秒前
搜集达人应助陈婷婷采纳,获得10
2秒前
所所应助超级白开水采纳,获得10
2秒前
3秒前
ziyewutong完成签到,获得积分10
4秒前
无私追命发布了新的文献求助10
5秒前
Johnho12047发布了新的文献求助10
6秒前
zhu97应助小章采纳,获得20
6秒前
落 风完成签到,获得积分10
8秒前
qianmo完成签到,获得积分10
8秒前
10秒前
子芩完成签到,获得积分10
12秒前
AU发布了新的文献求助10
15秒前
asd发布了新的文献求助10
15秒前
16秒前
18秒前
18秒前
19秒前
香酥板栗完成签到,获得积分10
19秒前
互助遵法尚德应助chezi采纳,获得10
19秒前
好哒喵发布了新的文献求助10
19秒前
20秒前
21秒前
陈婷婷发布了新的文献求助10
23秒前
酷卡卡完成签到,获得积分10
23秒前
24秒前
www发布了新的文献求助10
24秒前
AYY完成签到,获得积分10
24秒前
24秒前
Orange应助赫赫采纳,获得10
26秒前
27秒前
hazardatom完成签到,获得积分10
29秒前
29秒前
长期素食发布了新的文献求助10
30秒前
ured发布了新的文献求助20
32秒前
123456完成签到,获得积分0
34秒前
37秒前
38秒前
科研通AI2S应助王一刀采纳,获得10
40秒前
隐形曼青应助ured采纳,获得10
41秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323