Medical image identification methods: A review

计算机科学 人工智能 卷积神经网络 鉴定(生物学) 图像处理 图像分割 深度学习 医学影像学 分割 数字图像处理 医学诊断 计算机视觉 图像配准 机器学习 模式识别(心理学) 图像(数学) 医学 病理 生物 植物
作者
Juan Li,Pan Jiang,Qing An,Gai‐Ge Wang,Huafeng Kong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107777-107777 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107777
摘要

The identification of medical images is an essential task in computer-aided diagnosis, medical image retrieval and mining. Medical image data mainly include electronic health record data and gene information data, etc. Although intelligent imaging provided a good scheme for medical image analysis over traditional methods that rely on the handcrafted features, it remains challenging due to the diversity of imaging modalities and clinical pathologies. Many medical image identification methods provide a good scheme for medical image analysis. The concepts pertinent of methods, such as the machine learning, deep learning, convolutional neural networks, transfer learning, and other image processing technologies for medical image are analyzed and summarized in this paper. We reviewed these recent studies to provide a comprehensive overview of applying these methods in various medical image analysis tasks, such as object detection, image classification, image registration, segmentation, and other tasks. Especially, we emphasized the latest progress and contributions of different methods in medical image analysis, which are summarized base on different application scenarios, including classification, segmentation, detection, and image registration. In addition, the applications of different methods are summarized in different application area, such as pulmonary, brain, digital pathology, brain, skin, lung, renal, breast, neuromyelitis, vertebrae, and musculoskeletal, etc. Critical discussion of open challenges and directions for future research are finally summarized. Especially, excellent algorithms in computer vision, natural language processing, and unmanned driving will be applied to medical image recognition in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
手机应助科研通管家采纳,获得10
刚刚
Terahertz完成签到 ,获得积分10
刚刚
刚刚
刚刚
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
maher发布了新的文献求助30
1秒前
JamesPei应助专注的书包采纳,获得10
2秒前
2秒前
2秒前
敏感惜萍完成签到,获得积分20
2秒前
2秒前
2秒前
ddaizi完成签到,获得积分10
4秒前
wyf123应助长度2到采纳,获得50
5秒前
6秒前
6秒前
不忘初心完成签到,获得积分10
6秒前
Lazarus_x完成签到,获得积分10
6秒前
7秒前
7秒前
Kenzonvay发布了新的文献求助10
8秒前
Ryan发布了新的文献求助10
8秒前
9秒前
10秒前
cocolu应助兴奋的觅露采纳,获得10
10秒前
虾哥发布了新的文献求助10
11秒前
xian发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
Ryan完成签到,获得积分10
15秒前
16秒前
iiing完成签到,获得积分10
16秒前
19秒前
土豆炖大锅完成签到 ,获得积分10
19秒前
欣喜访旋发布了新的文献求助10
20秒前
SDNUDRUG发布了新的文献求助10
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328053
求助须知:如何正确求助?哪些是违规求助? 2958192
关于积分的说明 8589449
捐赠科研通 2636443
什么是DOI,文献DOI怎么找? 1442995
科研通“疑难数据库(出版商)”最低求助积分说明 668470
邀请新用户注册赠送积分活动 655696