Deep Learning–Based Synthetic TOF-MRA Generation Using Time-Resolved MRA in Fast Stroke Imaging

医学 图像质量 冲程(发动机) 放射科 闭塞 核医学 人工智能 外科 计算机科学 图像(数学) 机械工程 工程类
作者
Sung‐Hye You,Yongwon Cho,Byungjun Kim,Kyung‐Sook Yang,In Seong Kim,Bo Kyu Kim,Sang Eun Park,Sang Eun Park
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (12): 1391-1398 被引量:2
标识
DOI:10.3174/ajnr.a8063
摘要

BACKGROUND AND PURPOSE:

Time-resolved MRA enables collateral evaluation in acute ischemic stroke with large-vessel occlusion; however, a low SNR and spatial resolution impede the diagnosis of vascular occlusion. We developed a CycleGAN-based deep learning model to generate high-resolution synthetic TOF-MRA images using time-resolved MRA and evaluated its image quality and clinical efficacy.

MATERIALS AND METHODS:

This retrospective, single-center study included 397 patients who underwent both TOF- and time-resolved MRA between April 2021 and January 2022. Patients were divided into 2 groups for model development and image-quality validation. Image quality was evaluated qualitatively and quantitatively with 3 sequences. A multireader diagnostic optimality evaluation was performed by 16 radiologists. For clinical validation, we evaluated 123 patients who underwent fast stroke MR imaging to assess acute ischemic stroke. The diagnostic confidence level and decision time for large-vessel occlusion were also evaluated.

RESULTS:

Median values of overall image quality, noise, sharpness, venous contamination, and SNR for M1, M2, the basilar artery, and posterior cerebral artery are better with synthetic TOF than with time-resolved MRA. However, with respect to real TOF, synthetic TOF presents worse median values of overall image quality, sharpness, vascular conspicuity, and SNR for M3, the basilar artery, and the posterior cerebral artery. During the multireader evaluation, radiologists could not discriminate synthetic TOF images from TOF images. During clinical validation, both readers demonstrated increases in diagnostic confidence levels and decreases in decision time.

CONCLUSIONS:

A CycleGAN-based deep learning model was developed to generate synthetic TOF from time-resolved MRA. Synthetic TOF can potentially assist in the detection of large-vessel occlusion in stroke centers using time-resolved MRA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
果果瑞宁完成签到,获得积分10
刚刚
1秒前
机智小虾米完成签到,获得积分20
1秒前
goldenfleece完成签到,获得积分10
2秒前
科研通AI2S应助学者采纳,获得10
2秒前
小杨完成签到,获得积分10
3秒前
sutharsons应助科研通管家采纳,获得30
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Eric_Lee2000应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
王子完成签到,获得积分10
5秒前
李繁蕊发布了新的文献求助10
6秒前
诚心的大碗应助明理念桃采纳,获得20
6秒前
7秒前
meng完成签到,获得积分10
7秒前
学者完成签到,获得积分10
7秒前
英俊的铭应助愉快盼曼采纳,获得10
8秒前
8秒前
小媛完成签到 ,获得积分10
9秒前
学术小白完成签到,获得积分20
9秒前
赘婿应助xiaomeng采纳,获得10
9秒前
Khr1stINK发布了新的文献求助10
9秒前
清新的苑博完成签到,获得积分10
9秒前
10秒前
果果瑞宁发布了新的文献求助10
11秒前
阿美发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808