2D-Material-Assisted GaN Growth on GaN Template by MOCVD and Its Exfoliation Strategy

金属有机气相外延 材料科学 剥脱关节 外延 光电子学 纳米技术 氮化镓 石墨烯 图层(电子)
作者
Hoe-Min Kwak,Jong‐Il Kim,Je-Sung Lee,Jeongwoon Kim,Jaeyoung Baik,Soo-Young Choi,Sunwoo Shin,Jin‐Soo Kim,Seung‐Hyun Mun,Kyung-Pil Kim,Sang Ho Oh,Dong‐Seon Lee
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (50): 59025-59036 被引量:7
标识
DOI:10.1021/acsami.3c14076
摘要

The production of freestanding membranes using two-dimensional (2D) materials often involves techniques such as van der Waals (vdW) epitaxy, quasi-vdW epitaxy, and remote epitaxy. However, a challenge arises when attempting to manufacture freestanding GaN by using these 2D-material-assisted growth techniques. The issue lies in securing stability, as high-temperature growth conditions under metal–organic chemical vapor deposition (MOCVD) can cause damage to the 2D materials due to GaN decomposition of the substrate. Even when GaN is successfully grown using this method, damage to the 2D material leads to direct bonding with the substrate, making the exfoliation of the grown GaN nearly impossible. This study introduces an approach for GaN growth and exfoliation on 2D material/GaN templates. First, graphene and hexagonal boron nitride (h-BN) were transferred onto the GaN template, creating stable conditions under high temperatures and various gases in MOCVD. GaN was grown in a two-step process at 750 and 900 °C, ensuring exfoliation in cases where the 2D materials remained intact. Essentially, while it is challenging to grow GaN on 2D material/GaN using only MOCVD, this study demonstrates that with effective protection of the 2D material, the grown GaN can endure high temperatures and still be exfoliated. Furthermore, these results support that vdW epitaxy and remote epitaxy principle are not only possible with specific equipment but also applicable generally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗发布了新的文献求助20
刚刚
1秒前
1秒前
jarenthar完成签到 ,获得积分10
1秒前
1秒前
丘比特应助hata采纳,获得10
1秒前
顾矜应助lszhw采纳,获得10
2秒前
lqq完成签到 ,获得积分10
2秒前
2秒前
共享精神应助拟拟采纳,获得10
2秒前
2秒前
lhy12345完成签到,获得积分10
2秒前
非常可爱发布了新的文献求助20
3秒前
3秒前
3秒前
3秒前
科研民工发布了新的文献求助10
4秒前
文艺的初蓝完成签到 ,获得积分10
4秒前
TiAmo发布了新的文献求助10
4秒前
刘十三完成签到,获得积分10
4秒前
4秒前
犹豫忆南完成签到,获得积分10
5秒前
科研通AI5应助kingwhitewing采纳,获得10
6秒前
6秒前
mm关注了科研通微信公众号
6秒前
xieyuanxing发布了新的文献求助10
6秒前
6秒前
左然然完成签到,获得积分10
6秒前
6秒前
人福药业完成签到,获得积分10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
细腻晓露发布了新的文献求助10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
三里墩头应助科研通管家采纳,获得10
7秒前
天线宝宝应助科研通管家采纳,获得10
7秒前
wing00024完成签到,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740