摘要
Membrane-based separation of oxygen (O2) and nitrogen (N2) has emerged as an essential technological advancement with far-reaching implications across a multitude of industries. This comprehensive review explores the dynamic landscape of progress and challenges associated with this innovative approach to gas separation. The introductory section discusses deeply the rationale for employing membranes in gas separation processes. It underscores the key factors driving the evolution of this field, which encompass the development of sophisticated membrane modules, the exploration of state-of-the-art materials, the tailoring of membrane morphology, and the adoption of advanced manufacturing techniques. Subsequently, this article navigates through the intricate realm of membrane materials and synthesis methods, offering valuable insights into the selection of materials and the intricacies of fabrication techniques, including phase inversion and electrospinning. The analysis of gas transport within membranes aims to provide a comprehensive understanding of the fundamental principles that underlie efficient O2 and N2 separation. A thorough exploration of various membrane types and modules offers a detailed perspective on asymmetric membranes, mixed matrix membranes, block copolymer membranes, and various modified membranes, such as those incorporating metal-organic frameworks, zeolites, and carbon molecular sieves. Furthermore, this review meticulously dissects the impact of critical separation parameters, including feed composition, flow rate, temperature, and pressure, on separation efficiency. The article also spotlights recent breakthroughs and enhancements in the performance of membrane-based O2 and N2 separation, demonstrating the continued advancements in this field. Finally, it assesses the current state of progress, identifies existing challenges, and outlines the promising future prospects for membrane-based O2 and N2 separation technology.