癌变
癌症研究
基因沉默
细胞生长
生物
癌症
基因敲除
糖酵解
小RNA
癌基因
下调和上调
细胞凋亡
生物化学
酶
基因
细胞周期
遗传学
标识
DOI:10.1016/j.abb.2023.109841
摘要
Gastric cancer (GC) has emerged as one of the most common malignancies in gastrointestinal system. Inducible T-cell costimulator ligand (ICOSLG) was found to be highly expressed in various cancers, which contributes to disease progression. This study aims to investigate the role of ICOSLG and its potential mechanism of action in dictating the aggressiveness of GC cell. ICOSLG and miR-331–3p expression patterns in cancerous and para-cancerous tissues from GC patients were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The miRNAs targeting ICOSLG were predicted by "miRDB", "starBase," and "TargetScan" databases. The interplay of ICOSLG and miR-331–3p in dictating the aggressiveness and glycolysis of GC cells was investigated by CCK-8 proliferation assay and Transwell migration/invasion assays, as well as the detection of glucose uptake, lactate production and ATP levels. The tumorigenesis of GC cells after ICOSLG silencing was examined in the nude mice. ICOSLG was highly expressed in GC tissues, and GC patients with high ICOSLG expression showed a poorer prognosis than the low-expression group. Further, high ICOSLG level was correlated with more advanced TNM stages, more lymph-node metastases, and poorer tumor differentiation. ICOSLG knockdown inhibited the proliferation, migration, invasion and tumor formation of GC cells, which was concomitant with reduced glucose consumption, lactate production, and ATP levels. In contrast, ICOSLG overexpression enhanced the aggressiveness of GC cells, and this effect was abrogated after the treatment with glycolysis inhibitor. We further found that miR-331–3p was a negative regulator of ICOSLG4, and miR-331–3p overexpression reduced ICOSLG4 expression and suppressed the aggressive phenotype induced by ICOSLG4 in GC cells. Together, these findings indicate that ICOSLG4, as an oncogene, is upregulated to promote glycolysis and the malignant phenotype in GC cells. miR-331–3p, which is downregulated in GC tissues, functions as a negative regulator of ICOSLG4. Targeting miR-331–3p/ICOSLG4 axis could potentially suppress GC progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI