A Practical Adversarial Attack Against Sequence-Based Deep Learning Malware Classifiers

对抗制 恶意软件 计算机科学 人工智能 深度学习 机器学习 序列(生物学) 启发式 数据挖掘 计算机安全 遗传学 生物
作者
Kai Tan,Dongyang Zhan,Lin Ye,Hongli Zhang,Binxing Fang
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 708-721
标识
DOI:10.1109/tc.2023.3339955
摘要

Sequence-based deep learning models (e.g., RNNs), can detect malware by analyzing its behavioral sequences. Meanwhile, these models are susceptible to adversarial attacks. Attackers can create adversarial samples that alter the sequence characteristics of behavior sequences to deceive malware classifiers. The existing methods for generating adversarial samples typically involve deleting or replacing crucial behaviors in the original data sequences, or inserting benign behaviors that may violate the behavior constraints. However, these methods that directly manipulate sequences make adversarial samples difficult to implement or apply in practice. In this paper, we propose an adversarial attack approach based on Deep Q-Network and a heuristic backtracking search strategy, which can generate perturbation sequences that satisfy practical conditions for successful attacks. Subsequently, we utilize a novel transformation approach that maps modifications back to the source code, thereby avoiding the need to directly modify the behavior log sequences. We conduct an evaluation of our approach, and the results confirm its effectiveness in generating adversarial samples from real-world malware behavior sequences, which have a high success rate in evading anomaly detection models. Furthermore, our approach is practical and can generate adversarial samples while maintaining the functionality of the modified software.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤岛发布了新的文献求助10
刚刚
1秒前
二宝不饿发布了新的文献求助10
1秒前
小Q啊啾完成签到,获得积分10
1秒前
北瑾完成签到,获得积分20
1秒前
万能图书馆应助mini采纳,获得10
1秒前
xxxxx完成签到,获得积分20
1秒前
yu发布了新的文献求助10
1秒前
小蘑菇应助食杂砸采纳,获得10
1秒前
2秒前
233火完成签到,获得积分10
2秒前
Asarum发布了新的文献求助10
2秒前
ceeray23应助徐个徐采纳,获得10
2秒前
Akim应助康明雪采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
4秒前
搞怪夏蓉发布了新的文献求助10
4秒前
北瑾发布了新的文献求助10
4秒前
TheDay发布了新的文献求助10
4秒前
5秒前
5秒前
哈哈哈发布了新的文献求助10
5秒前
上官若男应助王瑾言采纳,获得30
5秒前
尕辉完成签到,获得积分10
5秒前
6秒前
yb完成签到 ,获得积分10
6秒前
友好的小鸽子完成签到,获得积分10
6秒前
今后应助zz采纳,获得10
6秒前
7秒前
7秒前
7秒前
ding应助萌酱采纳,获得10
7秒前
7秒前
大个应助丘奇采纳,获得10
8秒前
Ava应助食杂砸采纳,获得10
8秒前
moximoxi完成签到,获得积分10
8秒前
为什么不学习完成签到,获得积分10
9秒前
echo完成签到,获得积分10
9秒前
9秒前
啦啦啦完成签到,获得积分10
10秒前
科研通AI6应助F光采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049