A Practical Adversarial Attack Against Sequence-Based Deep Learning Malware Classifiers

对抗制 恶意软件 计算机科学 人工智能 深度学习 机器学习 序列(生物学) 启发式 数据挖掘 计算机安全 遗传学 生物
作者
Kai Tan,Dongyang Zhan,Lin Ye,Hongli Zhang,Binxing Fang
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 708-721
标识
DOI:10.1109/tc.2023.3339955
摘要

Sequence-based deep learning models (e.g., RNNs), can detect malware by analyzing its behavioral sequences. Meanwhile, these models are susceptible to adversarial attacks. Attackers can create adversarial samples that alter the sequence characteristics of behavior sequences to deceive malware classifiers. The existing methods for generating adversarial samples typically involve deleting or replacing crucial behaviors in the original data sequences, or inserting benign behaviors that may violate the behavior constraints. However, these methods that directly manipulate sequences make adversarial samples difficult to implement or apply in practice. In this paper, we propose an adversarial attack approach based on Deep Q-Network and a heuristic backtracking search strategy, which can generate perturbation sequences that satisfy practical conditions for successful attacks. Subsequently, we utilize a novel transformation approach that maps modifications back to the source code, thereby avoiding the need to directly modify the behavior log sequences. We conduct an evaluation of our approach, and the results confirm its effectiveness in generating adversarial samples from real-world malware behavior sequences, which have a high success rate in evading anomaly detection models. Furthermore, our approach is practical and can generate adversarial samples while maintaining the functionality of the modified software.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuojiu发布了新的文献求助10
2秒前
lijiauyi1994完成签到,获得积分10
2秒前
3秒前
3秒前
任性蘑菇发布了新的文献求助10
4秒前
single完成签到,获得积分10
4秒前
笨蛋美女完成签到 ,获得积分10
5秒前
Dream完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
Uzma完成签到,获得积分10
9秒前
俊杰完成签到,获得积分10
10秒前
奋斗忆灵发布了新的文献求助10
10秒前
嘿嘿哈完成签到 ,获得积分10
10秒前
123完成签到 ,获得积分10
11秒前
浮浮世世发布了新的文献求助10
11秒前
张佳乐完成签到,获得积分10
12秒前
文艺的冬卉完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
gaoyang完成签到,获得积分10
15秒前
奋斗忆灵完成签到,获得积分10
16秒前
Tigher发布了新的文献求助30
17秒前
17秒前
深情笑翠发布了新的文献求助10
18秒前
怕孤单的山河完成签到 ,获得积分10
20秒前
万能图书馆应助2302284972采纳,获得10
22秒前
22秒前
浮游应助西西弗斯采纳,获得10
22秒前
香蕉诗蕊应助西西弗斯采纳,获得10
22秒前
浮游应助西西弗斯采纳,获得10
22秒前
打打应助无风风采纳,获得10
22秒前
pancake应助Much采纳,获得200
23秒前
于富强发布了新的文献求助10
23秒前
24秒前
深情笑翠完成签到,获得积分10
26秒前
汉堡包应助震动的化蛹采纳,获得10
26秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716