A Practical Adversarial Attack Against Sequence-Based Deep Learning Malware Classifiers

对抗制 恶意软件 计算机科学 人工智能 深度学习 机器学习 序列(生物学) 启发式 数据挖掘 计算机安全 遗传学 生物
作者
Kai Tan,Dongyang Zhan,Lin Ye,Hongli Zhang,Binxing Fang
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 708-721
标识
DOI:10.1109/tc.2023.3339955
摘要

Sequence-based deep learning models (e.g., RNNs), can detect malware by analyzing its behavioral sequences. Meanwhile, these models are susceptible to adversarial attacks. Attackers can create adversarial samples that alter the sequence characteristics of behavior sequences to deceive malware classifiers. The existing methods for generating adversarial samples typically involve deleting or replacing crucial behaviors in the original data sequences, or inserting benign behaviors that may violate the behavior constraints. However, these methods that directly manipulate sequences make adversarial samples difficult to implement or apply in practice. In this paper, we propose an adversarial attack approach based on Deep Q-Network and a heuristic backtracking search strategy, which can generate perturbation sequences that satisfy practical conditions for successful attacks. Subsequently, we utilize a novel transformation approach that maps modifications back to the source code, thereby avoiding the need to directly modify the behavior log sequences. We conduct an evaluation of our approach, and the results confirm its effectiveness in generating adversarial samples from real-world malware behavior sequences, which have a high success rate in evading anomaly detection models. Furthermore, our approach is practical and can generate adversarial samples while maintaining the functionality of the modified software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助鱼大仙采纳,获得10
刚刚
完美世界应助asd采纳,获得10
3秒前
4秒前
可可龙完成签到,获得积分10
5秒前
顺利的寒云关注了科研通微信公众号
5秒前
8秒前
小怪完成签到,获得积分20
8秒前
8秒前
Colin完成签到 ,获得积分10
9秒前
9秒前
10秒前
潇洒莞发布了新的文献求助30
10秒前
ssss完成签到,获得积分10
10秒前
浅笑成风发布了新的文献求助10
11秒前
ssss发布了新的文献求助10
12秒前
小蘑菇应助ohhhh采纳,获得10
13秒前
Dr.向发布了新的文献求助10
14秒前
ICEBLUE完成签到,获得积分10
14秒前
张岱帅z完成签到,获得积分10
15秒前
海一鸣完成签到,获得积分10
15秒前
赘婿应助天润佳苑采纳,获得10
16秒前
w_完成签到,获得积分10
17秒前
18秒前
香风智乃完成签到 ,获得积分10
21秒前
21秒前
21秒前
黄小翰发布了新的文献求助10
22秒前
万能图书馆应助铭铭铭采纳,获得10
22秒前
鹤轸完成签到,获得积分10
22秒前
英俊的铭应助mint采纳,获得10
22秒前
雨点儿发布了新的文献求助10
24秒前
24秒前
今天要早睡完成签到,获得积分10
26秒前
失眠的香菇关注了科研通微信公众号
27秒前
仲夏发布了新的文献求助10
28秒前
28秒前
还单身的绮梅完成签到,获得积分10
30秒前
33秒前
善学以致用应助2522525采纳,获得10
33秒前
五五发布了新的文献求助10
33秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343057
求助须知:如何正确求助?哪些是违规求助? 2970087
关于积分的说明 8642705
捐赠科研通 2650072
什么是DOI,文献DOI怎么找? 1451108
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407