亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Practical Adversarial Attack Against Sequence-Based Deep Learning Malware Classifiers

对抗制 恶意软件 计算机科学 人工智能 深度学习 机器学习 序列(生物学) 启发式 数据挖掘 计算机安全 遗传学 生物
作者
Kai Tan,Dongyang Zhan,Lin Ye,Hongli Zhang,Binxing Fang
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 708-721
标识
DOI:10.1109/tc.2023.3339955
摘要

Sequence-based deep learning models (e.g., RNNs), can detect malware by analyzing its behavioral sequences. Meanwhile, these models are susceptible to adversarial attacks. Attackers can create adversarial samples that alter the sequence characteristics of behavior sequences to deceive malware classifiers. The existing methods for generating adversarial samples typically involve deleting or replacing crucial behaviors in the original data sequences, or inserting benign behaviors that may violate the behavior constraints. However, these methods that directly manipulate sequences make adversarial samples difficult to implement or apply in practice. In this paper, we propose an adversarial attack approach based on Deep Q-Network and a heuristic backtracking search strategy, which can generate perturbation sequences that satisfy practical conditions for successful attacks. Subsequently, we utilize a novel transformation approach that maps modifications back to the source code, thereby avoiding the need to directly modify the behavior log sequences. We conduct an evaluation of our approach, and the results confirm its effectiveness in generating adversarial samples from real-world malware behavior sequences, which have a high success rate in evading anomaly detection models. Furthermore, our approach is practical and can generate adversarial samples while maintaining the functionality of the modified software.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
7秒前
daguan完成签到,获得积分10
20秒前
小歘歘完成签到 ,获得积分10
21秒前
27秒前
qazwsx完成签到,获得积分10
56秒前
江梁完成签到 ,获得积分10
56秒前
Marshall发布了新的文献求助10
57秒前
1分钟前
自强不息完成签到 ,获得积分10
1分钟前
1分钟前
iNk应助krajicek采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
Jasper应助难过忆山采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
难过忆山发布了新的文献求助10
5分钟前
难过忆山完成签到,获得积分10
5分钟前
善学以致用应助难过忆山采纳,获得10
5分钟前
Scheduling完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
huenguyenvan完成签到,获得积分10
5分钟前
6分钟前
Fluoxtine发布了新的文献求助10
6分钟前
6分钟前
科研通AI6.1应助twk采纳,获得10
6分钟前
赘婿应助11采纳,获得10
6分钟前
Milo完成签到,获得积分10
6分钟前
6分钟前
tishe7发布了新的文献求助10
7分钟前
tishe7完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788683
求助须知:如何正确求助?哪些是违规求助? 5710419
关于积分的说明 15473796
捐赠科研通 4916665
什么是DOI,文献DOI怎么找? 2646504
邀请新用户注册赠送积分活动 1594185
关于科研通互助平台的介绍 1548612