A Practical Adversarial Attack Against Sequence-Based Deep Learning Malware Classifiers

对抗制 恶意软件 计算机科学 人工智能 深度学习 机器学习 序列(生物学) 启发式 数据挖掘 计算机安全 遗传学 生物
作者
Kai Tan,Dongyang Zhan,Lin Ye,Hongli Zhang,Binxing Fang
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 708-721
标识
DOI:10.1109/tc.2023.3339955
摘要

Sequence-based deep learning models (e.g., RNNs), can detect malware by analyzing its behavioral sequences. Meanwhile, these models are susceptible to adversarial attacks. Attackers can create adversarial samples that alter the sequence characteristics of behavior sequences to deceive malware classifiers. The existing methods for generating adversarial samples typically involve deleting or replacing crucial behaviors in the original data sequences, or inserting benign behaviors that may violate the behavior constraints. However, these methods that directly manipulate sequences make adversarial samples difficult to implement or apply in practice. In this paper, we propose an adversarial attack approach based on Deep Q-Network and a heuristic backtracking search strategy, which can generate perturbation sequences that satisfy practical conditions for successful attacks. Subsequently, we utilize a novel transformation approach that maps modifications back to the source code, thereby avoiding the need to directly modify the behavior log sequences. We conduct an evaluation of our approach, and the results confirm its effectiveness in generating adversarial samples from real-world malware behavior sequences, which have a high success rate in evading anomaly detection models. Furthermore, our approach is practical and can generate adversarial samples while maintaining the functionality of the modified software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晶晶完成签到,获得积分10
1秒前
科研通AI6应助闾丘博超采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
MM11111发布了新的文献求助10
3秒前
spring发布了新的文献求助10
3秒前
草莓熊完成签到,获得积分10
4秒前
爆米花应助lihua采纳,获得10
4秒前
JamesPei应助lszhw采纳,获得10
4秒前
4秒前
策略完成签到,获得积分10
5秒前
无花果应助王婷采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得50
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
wop111应助科研通管家采纳,获得20
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
Song完成签到,获得积分10
6秒前
思源应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269