Deep learning in food authenticity: Recent advances and future trends

深度学习 人工智能 机器学习 计算机科学 鉴定(生物学) 领域(数学) 自编码 人工神经网络 卷积神经网络 数据科学 数学 植物 生物 纯数学
作者
Zhuowen Deng,Nicholas J. Wang,Yun Zheng,Wanli Zhang,Yong‐Huan Yun
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:144: 104344-104344 被引量:17
标识
DOI:10.1016/j.tifs.2024.104344
摘要

The development of fast, efficient, accurate, and reliable techniques and methods for food authenticity identification is crucial for food quality assurance. Traditional machine learning algorithms often have limitations when handling complex sample data, exhibiting a suboptimal performance, particularly when addressing intricate problems and in large-scale data applications. In recent years, the emergence of deep learning algorithms has heralded revolutionary breakthroughs in the field of food authenticity identification, and the ongoing deep learning developments will continue to propel advancements in this field. This review presents an overview of the deep learning algorithms and various categories of deep neural network models and structures, including the multilayer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), autoencoder (AE), generative adversarial network (GAN), and attention mechanism (AM). It also summarizes the applications of these models, as well as the use of integrated models together with various analytical techniques in food authenticity. In addition, the latest developments and trends in deep learning in this field are discussed. The formidable capabilities of deep learning algorithms, in synergy with a broad array of analytical techniques, enhance the precision and efficiency of the analysis of the diverse food components. Concurrently, they have distinct advantages over traditional machine learning algorithms, showing significant potential for food authenticity identification. Although the use of deep learning still faces some challenges, with continuous technological advancements, more deep learning applications are expected to emerge in the food industry in the future to safeguard food authenticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助1111rrrrr采纳,获得30
1秒前
慧妞发布了新的文献求助10
5秒前
5秒前
6秒前
HSF完成签到 ,获得积分10
8秒前
zourui发布了新的文献求助10
8秒前
8秒前
8秒前
yidashi完成签到,获得积分10
9秒前
想飞的熊完成签到 ,获得积分0
9秒前
沉默安波完成签到,获得积分10
9秒前
充电宝应助嗯嗯采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
10秒前
Shirley应助科研通管家采纳,获得10
10秒前
Shirley应助科研通管家采纳,获得10
10秒前
marjorie应助科研通管家采纳,获得10
10秒前
tramp应助科研通管家采纳,获得20
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
没有昵称发布了新的文献求助10
13秒前
李爱国应助LLLLLLLL采纳,获得10
13秒前
可爱的函函应助小亿采纳,获得10
13秒前
沉默安波发布了新的文献求助10
13秒前
所所应助服部平次采纳,获得10
13秒前
慧妞完成签到,获得积分10
13秒前
lgm关闭了lgm文献求助
15秒前
16秒前
丰富的鞅完成签到 ,获得积分10
17秒前
17秒前
maomao完成签到,获得积分10
18秒前
雨寒完成签到,获得积分10
18秒前
学院路发布了新的文献求助10
19秒前
爱你一万年完成签到,获得积分10
19秒前
20秒前
21秒前
鲸鱼发布了新的文献求助20
21秒前
22秒前
圣托里尼完成签到,获得积分10
23秒前
wz完成签到,获得积分10
23秒前
苹果板栗完成签到,获得积分10
23秒前
所所应助Eternity采纳,获得10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237