Deep learning in food authenticity: Recent advances and future trends

深度学习 人工智能 机器学习 计算机科学 鉴定(生物学) 领域(数学) 自编码 人工神经网络 卷积神经网络 数据科学 数学 植物 生物 纯数学
作者
Zhuowen Deng,Tao Wang,Yun Zheng,Wanli Zhang,Yong‐Huan Yun
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:144: 104344-104344 被引量:43
标识
DOI:10.1016/j.tifs.2024.104344
摘要

The development of fast, efficient, accurate, and reliable techniques and methods for food authenticity identification is crucial for food quality assurance. Traditional machine learning algorithms often have limitations when handling complex sample data, exhibiting a suboptimal performance, particularly when addressing intricate problems and in large-scale data applications. In recent years, the emergence of deep learning algorithms has heralded revolutionary breakthroughs in the field of food authenticity identification, and the ongoing deep learning developments will continue to propel advancements in this field. This review presents an overview of the deep learning algorithms and various categories of deep neural network models and structures, including the multilayer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), autoencoder (AE), generative adversarial network (GAN), and attention mechanism (AM). It also summarizes the applications of these models, as well as the use of integrated models together with various analytical techniques in food authenticity. In addition, the latest developments and trends in deep learning in this field are discussed. The formidable capabilities of deep learning algorithms, in synergy with a broad array of analytical techniques, enhance the precision and efficiency of the analysis of the diverse food components. Concurrently, they have distinct advantages over traditional machine learning algorithms, showing significant potential for food authenticity identification. Although the use of deep learning still faces some challenges, with continuous technological advancements, more deep learning applications are expected to emerge in the food industry in the future to safeguard food authenticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄绮露完成签到,获得积分10
4秒前
i羽翼深蓝i完成签到,获得积分10
6秒前
小萌完成签到,获得积分10
6秒前
7秒前
清爽笑翠完成签到 ,获得积分10
7秒前
冬瓜鑫完成签到,获得积分10
8秒前
8秒前
莓卡卡的小葡萄应助12采纳,获得10
9秒前
听汐完成签到 ,获得积分10
10秒前
贪玩菲音完成签到,获得积分10
12秒前
BBQ完成签到,获得积分10
12秒前
YeeLeeLee完成签到,获得积分10
15秒前
16秒前
16秒前
金铭完成签到,获得积分10
19秒前
19秒前
溜溜很优秀完成签到,获得积分10
21秒前
12完成签到,获得积分10
22秒前
小冉完成签到,获得积分10
23秒前
Doris完成签到 ,获得积分10
24秒前
莓卡卡的小葡萄应助12采纳,获得10
25秒前
25秒前
LL完成签到,获得积分10
27秒前
真实的火车完成签到,获得积分10
28秒前
cha236发布了新的文献求助10
30秒前
不舍天真完成签到,获得积分10
30秒前
研友_89N27L完成签到,获得积分10
30秒前
31秒前
逆时针发布了新的文献求助50
31秒前
cdercder应助姜姜采纳,获得10
32秒前
搞怪人雄完成签到,获得积分10
32秒前
next完成签到,获得积分10
34秒前
云木完成签到 ,获得积分10
36秒前
所所应助知性的采珊采纳,获得10
37秒前
传奇3应助知性的采珊采纳,获得10
37秒前
周而复始@发布了新的文献求助10
37秒前
thanhmanhp完成签到,获得积分10
41秒前
skycool完成签到,获得积分10
42秒前
shenme完成签到 ,获得积分10
44秒前
yin完成签到,获得积分10
45秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736760
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020365
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656