亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of pressure fields on cavitation hydrofoil based on improved compressed sensing technology

稳健性(进化) 粒子群优化 人工神经网络 压缩传感 算法 基础(线性代数) 计算机科学 人工智能 物理 生物化学 化学 几何学 数学 基因
作者
Yangyang Sha,Yuhang Xu,Yingjie Wei,Cong Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0189088
摘要

In the face of mounting economic constraints, researchers are increasingly turning to data-driven methods for reconstructing unknown global fields from limited data. While traditional compressed sensing (CS) technology addresses this challenge, the least absolute shrinkage and selection operator algorithm within CS encounters difficulties in precisely solving basis coefficients. This challenge is exacerbated by the frequently unknown observation matrix, often necessitating optimization methods for resolution. This study introduces the CS-FNN (CS-Fully Connected Neural Network) method, leveraging neural network technology to refine CS-obtained basis coefficients. This approach proves particularly advantageous in scenarios involving custom observation points. Focused on hydrofoil pressure fields, our comparative analysis with CS-PSO (CS-Particle Swarm Optimization) covers the reconstruction accuracy, the performance in varied unsteady situations, and robustness concerning the number of truncated proper orthogonal decomposition modes, measuring point distribution, and real noise environments. Results demonstrate the superiority of CS-FNN over CS-PSO in predicting global hydrofoil pressure fields, with higher reconstruction accuracy, a more flexible arrangement of measuring points, and a balance between robustness and accuracy that meets the requirements of practical engineering. This innovative method introduces a new and effective approach for recovering high-dimensional data, presenting significant potential for practical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青柠味薯片应助CRUSADER采纳,获得10
1秒前
阳光的樱给阳光的樱的求助进行了留言
31秒前
45秒前
哈哈客发布了新的文献求助10
49秒前
54秒前
Lucas应助哈哈客采纳,获得10
1分钟前
哈哈客完成签到,获得积分20
1分钟前
1分钟前
阳光的樱发布了新的文献求助10
1分钟前
1分钟前
Gabriel发布了新的文献求助30
1分钟前
leo0531完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
李爱国应助Gabriel采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
小孟不忧郁完成签到,获得积分20
3分钟前
3分钟前
3分钟前
孙燕应助科研通管家采纳,获得30
4分钟前
草木完成签到 ,获得积分10
4分钟前
yi完成签到 ,获得积分10
4分钟前
5分钟前
123发布了新的文献求助10
5分钟前
顾矜应助123采纳,获得10
5分钟前
5分钟前
最落幕完成签到 ,获得积分10
5分钟前
6分钟前
Gabriel发布了新的文献求助10
6分钟前
斯文败类应助科研通管家采纳,获得10
6分钟前
千早爱音应助科研通管家采纳,获得10
6分钟前
华仔应助科研通管家采纳,获得10
6分钟前
6分钟前
青柠味薯片完成签到,获得积分10
6分钟前
Thanks完成签到 ,获得积分10
6分钟前
YAN完成签到 ,获得积分20
7分钟前
我是老大应助Gabriel采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848680
捐赠科研通 4336021
什么是DOI,文献DOI怎么找? 2380724
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998