Prediction of pressure fields on cavitation hydrofoil based on improved compressed sensing technology

稳健性(进化) 粒子群优化 人工神经网络 压缩传感 算法 基础(线性代数) 计算机科学 人工智能 物理 几何学 数学 生物化学 基因 化学
作者
Yangyang Sha,Yuhang Xu,Yingjie Wei,Cong Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0189088
摘要

In the face of mounting economic constraints, researchers are increasingly turning to data-driven methods for reconstructing unknown global fields from limited data. While traditional compressed sensing (CS) technology addresses this challenge, the least absolute shrinkage and selection operator algorithm within CS encounters difficulties in precisely solving basis coefficients. This challenge is exacerbated by the frequently unknown observation matrix, often necessitating optimization methods for resolution. This study introduces the CS-FNN (CS-Fully Connected Neural Network) method, leveraging neural network technology to refine CS-obtained basis coefficients. This approach proves particularly advantageous in scenarios involving custom observation points. Focused on hydrofoil pressure fields, our comparative analysis with CS-PSO (CS-Particle Swarm Optimization) covers the reconstruction accuracy, the performance in varied unsteady situations, and robustness concerning the number of truncated proper orthogonal decomposition modes, measuring point distribution, and real noise environments. Results demonstrate the superiority of CS-FNN over CS-PSO in predicting global hydrofoil pressure fields, with higher reconstruction accuracy, a more flexible arrangement of measuring points, and a balance between robustness and accuracy that meets the requirements of practical engineering. This innovative method introduces a new and effective approach for recovering high-dimensional data, presenting significant potential for practical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐白发布了新的文献求助10
刚刚
贪玩的醉柳关注了科研通微信公众号
1秒前
俊逸凌雪完成签到,获得积分10
1秒前
苹果煎蛋发布了新的文献求助10
2秒前
HXY完成签到,获得积分20
2秒前
三木完成签到,获得积分10
2秒前
英姑应助leo采纳,获得10
2秒前
4秒前
4秒前
4秒前
6秒前
cc4ever完成签到,获得积分10
6秒前
眯眯眼的访冬完成签到 ,获得积分10
7秒前
8秒前
hhh发布了新的文献求助10
8秒前
贾世冰发布了新的文献求助10
9秒前
赘婿应助乐白采纳,获得10
9秒前
从容慕青发布了新的文献求助10
9秒前
10秒前
学术版7e发布了新的文献求助30
11秒前
12秒前
12秒前
科研通AI5应助zhy采纳,获得30
13秒前
SciGPT应助冬夜渐暖采纳,获得10
14秒前
CT完成签到,获得积分10
14秒前
小猪发布了新的文献求助30
14秒前
Lucas应助西西采纳,获得10
14秒前
15秒前
Ava应助NSstupid采纳,获得10
15秒前
Lishumin发布了新的文献求助10
16秒前
16秒前
科研通AI6应助贾世冰采纳,获得10
17秒前
lele发布了新的文献求助10
17秒前
xzy998应助vw11采纳,获得10
18秒前
hong完成签到,获得积分10
18秒前
果子爱学习完成签到 ,获得积分10
18秒前
19秒前
可爱的函函应助醒醒采纳,获得10
19秒前
19秒前
mlainian发布了新的文献求助10
20秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972