清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of pressure fields on cavitation hydrofoil based on improved compressed sensing technology

稳健性(进化) 粒子群优化 人工神经网络 压缩传感 算法 基础(线性代数) 计算机科学 人工智能 物理 生物化学 化学 几何学 数学 基因
作者
Yangyang Sha,Yuhang Xu,Yingjie Wei,Cong Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0189088
摘要

In the face of mounting economic constraints, researchers are increasingly turning to data-driven methods for reconstructing unknown global fields from limited data. While traditional compressed sensing (CS) technology addresses this challenge, the least absolute shrinkage and selection operator algorithm within CS encounters difficulties in precisely solving basis coefficients. This challenge is exacerbated by the frequently unknown observation matrix, often necessitating optimization methods for resolution. This study introduces the CS-FNN (CS-Fully Connected Neural Network) method, leveraging neural network technology to refine CS-obtained basis coefficients. This approach proves particularly advantageous in scenarios involving custom observation points. Focused on hydrofoil pressure fields, our comparative analysis with CS-PSO (CS-Particle Swarm Optimization) covers the reconstruction accuracy, the performance in varied unsteady situations, and robustness concerning the number of truncated proper orthogonal decomposition modes, measuring point distribution, and real noise environments. Results demonstrate the superiority of CS-FNN over CS-PSO in predicting global hydrofoil pressure fields, with higher reconstruction accuracy, a more flexible arrangement of measuring points, and a balance between robustness and accuracy that meets the requirements of practical engineering. This innovative method introduces a new and effective approach for recovering high-dimensional data, presenting significant potential for practical engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanghe完成签到,获得积分10
2秒前
al完成签到 ,获得积分0
20秒前
fox发布了新的文献求助10
29秒前
zhangxiaoqing完成签到,获得积分10
31秒前
sidashu完成签到,获得积分10
47秒前
mmj完成签到,获得积分20
50秒前
酷酷小子完成签到 ,获得积分0
52秒前
FBQZDJG2122完成签到,获得积分10
1分钟前
balko完成签到,获得积分10
1分钟前
连冷安完成签到,获得积分10
2分钟前
潇湘完成签到 ,获得积分10
2分钟前
眯眯眼的安雁完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
2分钟前
cugwzr完成签到,获得积分10
2分钟前
qzh006完成签到,获得积分10
2分钟前
2分钟前
陶醉的烤鸡完成签到 ,获得积分10
2分钟前
Bolin发布了新的文献求助10
3分钟前
ruby发布了新的文献求助10
3分钟前
科研通AI2S应助juphen2采纳,获得10
3分钟前
zzgpku完成签到,获得积分0
3分钟前
小欣子完成签到 ,获得积分10
4分钟前
4分钟前
程翠丝发布了新的文献求助10
4分钟前
江枫渔火完成签到 ,获得积分10
4分钟前
4分钟前
科目三应助haibing采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
4分钟前
研友_851KE8发布了新的文献求助10
5分钟前
寡核苷酸小白完成签到 ,获得积分10
5分钟前
5分钟前
haibing发布了新的文献求助10
5分钟前
笑傲完成签到,获得积分10
5分钟前
冉亦完成签到,获得积分10
5分钟前
5分钟前
haibing完成签到,获得积分20
5分钟前
愤怒的念蕾完成签到,获得积分10
5分钟前
DDXXC完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509948
求助须知:如何正确求助?哪些是违规求助? 4604654
关于积分的说明 14489966
捐赠科研通 4539646
什么是DOI,文献DOI怎么找? 2487621
邀请新用户注册赠送积分活动 1469921
关于科研通互助平台的介绍 1442275