Prediction of pressure fields on cavitation hydrofoil based on improved compressed sensing technology

稳健性(进化) 粒子群优化 人工神经网络 压缩传感 算法 基础(线性代数) 计算机科学 人工智能 物理 生物化学 化学 几何学 数学 基因
作者
Yangyang Sha,Yuhang Xu,Yingjie Wei,Cong Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0189088
摘要

In the face of mounting economic constraints, researchers are increasingly turning to data-driven methods for reconstructing unknown global fields from limited data. While traditional compressed sensing (CS) technology addresses this challenge, the least absolute shrinkage and selection operator algorithm within CS encounters difficulties in precisely solving basis coefficients. This challenge is exacerbated by the frequently unknown observation matrix, often necessitating optimization methods for resolution. This study introduces the CS-FNN (CS-Fully Connected Neural Network) method, leveraging neural network technology to refine CS-obtained basis coefficients. This approach proves particularly advantageous in scenarios involving custom observation points. Focused on hydrofoil pressure fields, our comparative analysis with CS-PSO (CS-Particle Swarm Optimization) covers the reconstruction accuracy, the performance in varied unsteady situations, and robustness concerning the number of truncated proper orthogonal decomposition modes, measuring point distribution, and real noise environments. Results demonstrate the superiority of CS-FNN over CS-PSO in predicting global hydrofoil pressure fields, with higher reconstruction accuracy, a more flexible arrangement of measuring points, and a balance between robustness and accuracy that meets the requirements of practical engineering. This innovative method introduces a new and effective approach for recovering high-dimensional data, presenting significant potential for practical engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒克发布了新的文献求助10
刚刚
1秒前
羊羊觉得可以完成签到,获得积分10
1秒前
四爷完成签到,获得积分10
1秒前
pppsci完成签到,获得积分10
2秒前
李爱国应助YMH采纳,获得10
4秒前
5秒前
5秒前
5秒前
SciGPT应助仙女婆婆采纳,获得10
7秒前
liyan完成签到 ,获得积分10
7秒前
糖糖发布了新的文献求助10
8秒前
Xiu完成签到,获得积分10
9秒前
9秒前
陶月慧发布了新的文献求助10
10秒前
小马甲应助舒克采纳,获得10
10秒前
爱卿萌萌哒完成签到 ,获得积分10
10秒前
王某人发布了新的文献求助10
10秒前
可爱的函函应助不安冰棍采纳,获得10
11秒前
11秒前
凯子哥完成签到,获得积分10
12秒前
12秒前
可册册发布了新的文献求助10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
Hilda007应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
CipherSage应助杂粮米采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
蓝天应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得30
13秒前
打打应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
蓝天应助科研通管家采纳,获得10
13秒前
13秒前
来日昭昭应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282