基因敲除
上皮-间质转换
泛素
癌症研究
下调和上调
信使核糖核酸
赫拉
转移
宫颈癌
信号转导
泛素连接酶
生物
化学
分子生物学
癌症
细胞生物学
细胞培养
基因
生物化学
遗传学
作者
Hongying Sui,Caixia Shi,Zhipeng Yan,Jinyang Chen,Lin Man,Fang Wang
标识
DOI:10.1158/1541-7786.mcr-23-0478
摘要
Abstract Cervical cancer severely affects women’s health with increased incidence and poor survival for patients with metastasis. Our study aims to investigate the mechanism by which lncRNA LRRC75A-AS1 regulates the epithelial–mesenchymal transition (EMT) of cervical cancer through modulating m6A and ubiquitination modification. In this study, tumor tissues were collected from patients to analyze the expression of LRRC75A-AS1 and SYVN1. Migratory and invasive capacities of HeLa and CaSki cells were evaluated with wound healing and transwell assays. CCK-8 and EdU incor-poration assays were employed to examine cell proliferation. The interaction between LRRC75A-AS1, IGF2BP1, SYVN1, and NLRP3 was evaluated through RNA immunoprecipitation, RNA pull-down, FISH, and coimmunoprecipitation assays, respectively. MeRIP-qPCR was applied to analyze the m6A modification of SYVN1 mRNA. A subcutaneous tumor model of cervical cancer was established. We showed LRRC75A-AS1 was upregulated in tumor tissues, and LRRC75A-AS1 enhanced EMT through activating NLRP3/IL1β/Smad2/3 signaling in cervical cancer. Furthermore, LRRC75A-AS1 inhibited SYVN1-mediated NLRP3 ubiquitination by destabilizing SYVN1 mRNA. LRRC75A-AS1 competitively bound to IGF2BP1 protein and subsequently impaired the m6A modification of SYVN1 mRNA and its stability. Knockdown of LRRC75A-AS1 repressed EMT and tumor growth via inhibiting NLRP3/IL-1β/Smad2/3 signaling in mice. In conclusion, LRRC75A-AS1 competitively binds to IGF2BP1 protein to destabilize SYVN1 mRNA, subsequently suppresses SYVN1-mediated NLRP3 ubiquitination degradation and activates IL1β/Smad2/3 signaling, thus promoting EMT in cervical cancer. Implication: LRRC75A-AS1 promotes cervical cancer progression, and this study suggests LRRC75A-AS1 as a new therapeutic target for cervical cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI