Click-Pixel Cognition Fusion Network With Balanced Cut for Interactive Image Segmentation

像素 图像分割 计算机科学 分割 人工智能 图像融合 融合 尺度空间分割 计算机视觉 图像处理 图像(数学) 基于分割的对象分类 模式识别(心理学) 语言学 哲学
作者
Jiacheng Lin,Xiao Zhiqiang,Xiaohui Wei,Puhong Duan,Xuan He,Renwei Dian,Zhiyong Li,Shutao Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 177-190 被引量:2
标识
DOI:10.1109/tip.2023.3338003
摘要

Interactive image segmentation (IIS) has been widely used in various fields, such as medicine, industry, etc. However, some core issues, such as pixel imbalance, remain unresolved so far. Different from existing methods based on pre-processing or post-processing, we analyze the cause of pixel imbalance in depth from the two perspectives of pixel number and pixel difficulty. Based on this, a novel and unified Click-pixel Cognition Fusion network with Balanced Cut (CCF-BC) is proposed in this paper. On the one hand, the Click-pixel Cognition Fusion (CCF) module, inspired by the human cognition mechanism, is designed to increase the number of click-related pixels (namely, positive pixels) being correctly segmented, where the click and visual information are fully fused by using a progressive three-tier interaction strategy. On the other hand, a general loss, Balanced Normalized Focal Loss (BNFL), is proposed. Its core is to use a group of control coefficients related to sample gradients and forces the network to pay more attention to positive and hard-to-segment pixels during training. As a result, BNFL always tends to obtain a balanced cut of positive and negative samples in the decision space. Theoretical analysis shows that the commonly used Focal and BCE losses can be regarded as special cases of BNFL. Experiment results of five well-recognized datasets have shown the superiority of the proposed CCF-BC method compared to other state-of-the-art methods. The source code is publicly available at https://github.com/lab206/CCF-BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙傲天发布了新的文献求助10
刚刚
anna1992发布了新的文献求助10
1秒前
可乐应助何垠禹采纳,获得10
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
ED应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
LEMONS应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
菠萝炒饭应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
LaTeXer应助科研通管家采纳,获得150
2秒前
ED应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
ycd发布了新的文献求助10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
LEMONS应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149