Click-Pixel Cognition Fusion Network With Balanced Cut for Interactive Image Segmentation

像素 图像分割 计算机科学 分割 人工智能 图像融合 融合 尺度空间分割 计算机视觉 图像处理 图像(数学) 基于分割的对象分类 模式识别(心理学) 语言学 哲学
作者
Jiacheng Lin,Xiao Zhiqiang,Xiaohui Wei,Puhong Duan,Xuan He,Renwei Dian,Zhiyong Li,Shutao Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 177-190 被引量:2
标识
DOI:10.1109/tip.2023.3338003
摘要

Interactive image segmentation (IIS) has been widely used in various fields, such as medicine, industry, etc. However, some core issues, such as pixel imbalance, remain unresolved so far. Different from existing methods based on pre-processing or post-processing, we analyze the cause of pixel imbalance in depth from the two perspectives of pixel number and pixel difficulty. Based on this, a novel and unified Click-pixel Cognition Fusion network with Balanced Cut (CCF-BC) is proposed in this paper. On the one hand, the Click-pixel Cognition Fusion (CCF) module, inspired by the human cognition mechanism, is designed to increase the number of click-related pixels (namely, positive pixels) being correctly segmented, where the click and visual information are fully fused by using a progressive three-tier interaction strategy. On the other hand, a general loss, Balanced Normalized Focal Loss (BNFL), is proposed. Its core is to use a group of control coefficients related to sample gradients and forces the network to pay more attention to positive and hard-to-segment pixels during training. As a result, BNFL always tends to obtain a balanced cut of positive and negative samples in the decision space. Theoretical analysis shows that the commonly used Focal and BCE losses can be regarded as special cases of BNFL. Experiment results of five well-recognized datasets have shown the superiority of the proposed CCF-BC method compared to other state-of-the-art methods. The source code is publicly available at https://github.com/lab206/CCF-BC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mumu完成签到,获得积分10
刚刚
眼睛大的寄容完成签到 ,获得积分10
刚刚
刚刚
共享精神应助ning采纳,获得10
1秒前
汉堡包应助yanxin采纳,获得10
2秒前
易子发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
wssf756完成签到,获得积分10
2秒前
科研菜鸟发布了新的文献求助10
3秒前
110完成签到,获得积分10
3秒前
元气水牛完成签到 ,获得积分10
3秒前
赖晨靓完成签到 ,获得积分10
3秒前
Kan完成签到 ,获得积分10
3秒前
3秒前
斯文败类应助傲娇时光采纳,获得10
3秒前
无辜丹翠发布了新的文献求助10
4秒前
kun完成签到,获得积分10
4秒前
4秒前
4秒前
lizh187完成签到,获得积分10
4秒前
所所应助sweat采纳,获得10
5秒前
ling发布了新的文献求助10
5秒前
Todo完成签到 ,获得积分10
5秒前
野狼干完成签到,获得积分20
6秒前
Azhou完成签到,获得积分10
6秒前
7秒前
zjh完成签到,获得积分10
7秒前
7秒前
敏感的惜文完成签到,获得积分10
7秒前
7秒前
kyan发布了新的文献求助10
7秒前
汉堡包应助123采纳,获得10
8秒前
鳗鱼不尤完成签到,获得积分10
8秒前
wssf756发布了新的文献求助10
8秒前
wills应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得30
8秒前
SciGPT应助科研菜鸟采纳,获得10
8秒前
Cui完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006