Click-Pixel Cognition Fusion Network With Balanced Cut for Interactive Image Segmentation

像素 图像分割 计算机科学 分割 人工智能 图像融合 融合 尺度空间分割 计算机视觉 图像处理 图像(数学) 基于分割的对象分类 模式识别(心理学) 语言学 哲学
作者
Jiacheng Lin,Xiao Zhiqiang,Xiaohui Wei,Puhong Duan,Xuan He,Renwei Dian,Zhiyong Li,Shutao Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 177-190 被引量:2
标识
DOI:10.1109/tip.2023.3338003
摘要

Interactive image segmentation (IIS) has been widely used in various fields, such as medicine, industry, etc. However, some core issues, such as pixel imbalance, remain unresolved so far. Different from existing methods based on pre-processing or post-processing, we analyze the cause of pixel imbalance in depth from the two perspectives of pixel number and pixel difficulty. Based on this, a novel and unified Click-pixel Cognition Fusion network with Balanced Cut (CCF-BC) is proposed in this paper. On the one hand, the Click-pixel Cognition Fusion (CCF) module, inspired by the human cognition mechanism, is designed to increase the number of click-related pixels (namely, positive pixels) being correctly segmented, where the click and visual information are fully fused by using a progressive three-tier interaction strategy. On the other hand, a general loss, Balanced Normalized Focal Loss (BNFL), is proposed. Its core is to use a group of control coefficients related to sample gradients and forces the network to pay more attention to positive and hard-to-segment pixels during training. As a result, BNFL always tends to obtain a balanced cut of positive and negative samples in the decision space. Theoretical analysis shows that the commonly used Focal and BCE losses can be regarded as special cases of BNFL. Experiment results of five well-recognized datasets have shown the superiority of the proposed CCF-BC method compared to other state-of-the-art methods. The source code is publicly available at https://github.com/lab206/CCF-BC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到 ,获得积分20
1秒前
冷静妙海完成签到,获得积分10
2秒前
adverse发布了新的文献求助10
2秒前
2秒前
WZH完成签到,获得积分10
3秒前
apex完成签到 ,获得积分10
3秒前
wbhou发布了新的文献求助10
4秒前
無端完成签到 ,获得积分10
6秒前
搜集达人应助超级日光采纳,获得10
9秒前
欣喜的人龙完成签到 ,获得积分10
10秒前
她说肚子是吃大的i完成签到,获得积分10
10秒前
CodeCraft应助小凯采纳,获得10
11秒前
YueXiaojing发布了新的文献求助30
12秒前
李思繁发布了新的文献求助30
12秒前
13秒前
JamesPei应助美好斓采纳,获得30
13秒前
13秒前
michael发布了新的文献求助10
14秒前
晶晶宝贝的完成签到 ,获得积分10
15秒前
经锦程完成签到,获得积分20
18秒前
bzssyy完成签到,获得积分20
18秒前
19秒前
写个锤子完成签到,获得积分10
19秒前
忆_完成签到 ,获得积分10
24秒前
24秒前
查亮亮完成签到,获得积分10
24秒前
25秒前
hh发布了新的文献求助10
27秒前
裴雅柔完成签到,获得积分10
29秒前
29秒前
30秒前
学术牛马完成签到,获得积分10
31秒前
漫山完成签到,获得积分10
31秒前
超级日光发布了新的文献求助10
31秒前
小凯发布了新的文献求助10
31秒前
Gamera完成签到 ,获得积分10
31秒前
31秒前
32秒前
赵紫怡发布了新的文献求助10
34秒前
hhgcc发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539792
求助须知:如何正确求助?哪些是违规求助? 4626553
关于积分的说明 14599759
捐赠科研通 4567423
什么是DOI,文献DOI怎么找? 2504037
邀请新用户注册赠送积分活动 1481750
关于科研通互助平台的介绍 1453372