Click-Pixel Cognition Fusion Network With Balanced Cut for Interactive Image Segmentation

像素 图像分割 计算机科学 分割 人工智能 图像融合 融合 尺度空间分割 计算机视觉 图像处理 图像(数学) 基于分割的对象分类 模式识别(心理学) 语言学 哲学
作者
Jiacheng Lin,Xiao Zhiqiang,Xiaohui Wei,Puhong Duan,Xuan He,Renwei Dian,Zhiyong Li,Shutao Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 177-190 被引量:2
标识
DOI:10.1109/tip.2023.3338003
摘要

Interactive image segmentation (IIS) has been widely used in various fields, such as medicine, industry, etc. However, some core issues, such as pixel imbalance, remain unresolved so far. Different from existing methods based on pre-processing or post-processing, we analyze the cause of pixel imbalance in depth from the two perspectives of pixel number and pixel difficulty. Based on this, a novel and unified Click-pixel Cognition Fusion network with Balanced Cut (CCF-BC) is proposed in this paper. On the one hand, the Click-pixel Cognition Fusion (CCF) module, inspired by the human cognition mechanism, is designed to increase the number of click-related pixels (namely, positive pixels) being correctly segmented, where the click and visual information are fully fused by using a progressive three-tier interaction strategy. On the other hand, a general loss, Balanced Normalized Focal Loss (BNFL), is proposed. Its core is to use a group of control coefficients related to sample gradients and forces the network to pay more attention to positive and hard-to-segment pixels during training. As a result, BNFL always tends to obtain a balanced cut of positive and negative samples in the decision space. Theoretical analysis shows that the commonly used Focal and BCE losses can be regarded as special cases of BNFL. Experiment results of five well-recognized datasets have shown the superiority of the proposed CCF-BC method compared to other state-of-the-art methods. The source code is publicly available at https://github.com/lab206/CCF-BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ljyimu发布了新的文献求助10
1秒前
完美世界应助唐瑾瑜采纳,获得10
1秒前
yangya应助李李采纳,获得10
2秒前
卡哥完成签到,获得积分10
2秒前
3秒前
white发布了新的文献求助10
3秒前
乐观寄真发布了新的文献求助10
3秒前
6秒前
6秒前
6秒前
在水一方应助white采纳,获得30
8秒前
123发布了新的文献求助80
9秒前
Jidekxin完成签到 ,获得积分10
10秒前
11秒前
12秒前
shinysparrow应助xushanqi采纳,获得200
12秒前
13秒前
陈文文完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
hi发布了新的文献求助10
16秒前
18秒前
张益萌应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得50
18秒前
18秒前
iNk应助科研通管家采纳,获得10
18秒前
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
抹茶蜜豆卷卷完成签到,获得积分10
18秒前
19秒前
唐瑾瑜发布了新的文献求助10
19秒前
19秒前
20秒前
彩色代萱发布了新的文献求助10
20秒前
秀丽雁风发布了新的文献求助10
21秒前
啊圣诞袜应助尛瞐慶成采纳,获得10
22秒前
迷路世立完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302103
求助须知:如何正确求助?哪些是违规求助? 2936595
关于积分的说明 8478287
捐赠科研通 2610377
什么是DOI,文献DOI怎么找? 1425135
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646476