DeepCache: Accelerating Diffusion Models for Free

计算机科学 加速 计算 冗余(工程) 再培训 重新使用 人工智能 降噪 机器学习 算法 并行计算 生态学 国际贸易 业务 生物 操作系统
作者
Xinyin Ma,Gongfan Fang,Xinchao Wang
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2312.00858
摘要

Diffusion models have recently gained unprecedented attention in the field of image synthesis due to their remarkable generative capabilities. Notwithstanding their prowess, these models often incur substantial computational costs, primarily attributed to the sequential denoising process and cumbersome model size. Traditional methods for compressing diffusion models typically involve extensive retraining, presenting cost and feasibility challenges. In this paper, we introduce DeepCache, a novel training-free paradigm that accelerates diffusion models from the perspective of model architecture. DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models, which caches and retrieves features across adjacent denoising stages, thereby curtailing redundant computations. Utilizing the property of the U-Net, we reuse the high-level features while updating the low-level features in a very cheap way. This innovative strategy, in turn, enables a speedup factor of 2.3$\times$ for Stable Diffusion v1.5 with only a 0.05 decline in CLIP Score, and 4.1$\times$ for LDM-4-G with a slight decrease of 0.22 in FID on ImageNet. Our experiments also demonstrate DeepCache's superiority over existing pruning and distillation methods that necessitate retraining and its compatibility with current sampling techniques. Furthermore, we find that under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS. The code is available at https://github.com/horseee/DeepCache
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小芳芳完成签到,获得积分20
1秒前
华仔应助阿巴阿巴采纳,获得10
2秒前
healer发布了新的文献求助10
2秒前
小芳芳发布了新的文献求助10
3秒前
Vicky完成签到 ,获得积分10
4秒前
小小章鱼发布了新的文献求助10
5秒前
田様应助Hayward采纳,获得10
5秒前
runtang发布了新的文献求助10
7秒前
宜醉宜游宜睡完成签到,获得积分0
11秒前
12秒前
善学以致用应助熙熙采纳,获得10
13秒前
Charon完成签到,获得积分10
13秒前
852应助要减肥丹妗采纳,获得10
13秒前
阿狸与桃子完成签到,获得积分10
13秒前
小小章鱼完成签到,获得积分10
14秒前
14秒前
小明应助独角兽采纳,获得30
15秒前
15秒前
CodeCraft应助save采纳,获得10
15秒前
无花果应助戈美婷采纳,获得10
16秒前
小白小王发布了新的文献求助10
17秒前
duwang发布了新的文献求助20
17秒前
ywzwszl完成签到,获得积分0
17秒前
dongdong完成签到,获得积分10
17秒前
炙热的无心完成签到 ,获得积分10
18秒前
19秒前
独特元蝶发布了新的文献求助10
19秒前
20秒前
20秒前
SciGPT应助阿狸与桃子采纳,获得10
22秒前
foxp3发布了新的文献求助10
22秒前
23秒前
懒癌晚期完成签到,获得积分10
23秒前
田野发布了新的文献求助10
23秒前
星辰大海应助小白小王采纳,获得10
24秒前
Jewel_719完成签到,获得积分10
24秒前
25秒前
runtang发布了新的文献求助10
25秒前
淡墨发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577961
求助须知:如何正确求助?哪些是违规求助? 3997059
关于积分的说明 12374252
捐赠科研通 3671085
什么是DOI,文献DOI怎么找? 2023246
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176