计算机科学
大数据
智能电网
数据科学
领域(数学)
领域(数学分析)
分析
网格
控制(管理)
资产(计算机安全)
分布式计算
数据挖掘
人工智能
计算机安全
数学
几何学
生物
数学分析
纯数学
生态学
作者
Sonia Djebali,Guillaume Guérard,Ihab Taleb
标识
DOI:10.1016/j.future.2023.11.033
摘要
Digital twins are a promising technology for simulating complex systems, especially in the smart grid domain. This paper offers a comprehensive literature review on digital twins, focusing on data gathering, data management, and human-in-the-loop control design aspects. Emphasizing the integration of AI and machine learning in big data, it enhances analytics and decision-making capabilities. We introduce a collaborative framework involving multiple stakeholders to maximize the potential of digital twins. The paper examines digital twin applications in smart grids, covering areas like asset management, predictive maintenance, energy optimization, and demand response. By synthesizing research and implementation findings, we identify trends, challenges, and opportunities in the field.
科研通智能强力驱动
Strongly Powered by AbleSci AI