RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 哲学 语言学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier]
卷期号:657: 120007-120007 被引量:47
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
小鹿儿完成签到,获得积分0
1秒前
猫尔儿完成签到,获得积分10
1秒前
2秒前
2秒前
TaiLongYang完成签到,获得积分20
2秒前
赘婿应助飞云之下采纳,获得10
2秒前
3秒前
和谐飞飞完成签到,获得积分10
4秒前
mmy完成签到,获得积分10
4秒前
4秒前
yangxt-iga发布了新的文献求助10
4秒前
体贴琳完成签到 ,获得积分10
4秒前
小于子88完成签到,获得积分10
4秒前
斯文败类应助vv1223采纳,获得20
5秒前
SciGPT应助不舍天真采纳,获得10
5秒前
5秒前
6秒前
LZCCC完成签到,获得积分10
6秒前
fvsuar完成签到,获得积分10
6秒前
大聪明发布了新的文献求助10
6秒前
Eins完成签到 ,获得积分10
6秒前
丢丢在吗发布了新的文献求助10
6秒前
佳佳发布了新的文献求助10
6秒前
su发布了新的文献求助10
6秒前
见雨鱼完成签到 ,获得积分10
6秒前
6秒前
狗熊发布了新的文献求助10
7秒前
7秒前
打打应助追寻的问玉采纳,获得10
7秒前
a'mao'men完成签到,获得积分10
7秒前
嘟嘟发布了新的文献求助10
7秒前
思源应助PaoPao采纳,获得10
7秒前
王旭发布了新的文献求助10
8秒前
小迷糊完成签到 ,获得积分10
8秒前
8秒前
Simone发布了新的文献求助10
8秒前
昌怜烟完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977