RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 哲学 语言学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier]
卷期号:657: 120007-120007 被引量:47
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爱听歌季节完成签到,获得积分10
2秒前
3秒前
wfc发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Owen应助LXJ采纳,获得10
4秒前
4秒前
文艺语蓉发布了新的文献求助10
4秒前
5秒前
情怀应助大胆的青槐采纳,获得10
5秒前
6秒前
璃城完成签到 ,获得积分10
7秒前
8秒前
Alex发布了新的文献求助10
8秒前
领导范儿应助白茅茅采纳,获得30
8秒前
文献期待发布了新的文献求助10
9秒前
9秒前
大海发布了新的文献求助10
9秒前
立军发布了新的文献求助50
9秒前
zhangjiyuan发布了新的文献求助10
9秒前
HDUTY完成签到,获得积分10
10秒前
奔跑的小达完成签到,获得积分10
10秒前
orixero应助机灵若风采纳,获得10
10秒前
10秒前
wfc完成签到,获得积分10
10秒前
WYP完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
余健发布了新的文献求助10
11秒前
11秒前
Jacky应助呃呃呃采纳,获得10
12秒前
12秒前
HDUTY发布了新的文献求助10
14秒前
BY0131发布了新的文献求助10
14秒前
嘟嘟发布了新的文献求助10
14秒前
大模型应助Alex采纳,获得10
15秒前
越努力 越幸运完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469155
求助须知:如何正确求助?哪些是违规求助? 4572311
关于积分的说明 14335054
捐赠科研通 4499131
什么是DOI,文献DOI怎么找? 2464938
邀请新用户注册赠送积分活动 1453493
关于科研通互助平台的介绍 1428006