RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 哲学 语言学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier]
卷期号:657: 120007-120007 被引量:49
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助安详岱周采纳,获得10
刚刚
orixero应助体贴的语柔采纳,获得10
3秒前
4秒前
4秒前
4秒前
栾栾栾完成签到,获得积分10
4秒前
Owen应助青争采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
一叶扁舟。完成签到 ,获得积分10
8秒前
无极微光应助小Y采纳,获得20
8秒前
9秒前
9秒前
不爱看文献头疼应助zlh采纳,获得10
9秒前
曾经青亦发布了新的文献求助10
9秒前
13秒前
13秒前
13秒前
14秒前
15秒前
15秒前
丸子圆圆完成签到,获得积分10
15秒前
happiness发布了新的文献求助10
16秒前
小不点发布了新的文献求助10
16秒前
16秒前
llll完成签到 ,获得积分10
18秒前
爆米花应助wqkkk采纳,获得10
18秒前
丸子圆圆发布了新的文献求助30
18秒前
wuxunxun2015发布了新的文献求助10
18秒前
19秒前
Neo完成签到,获得积分10
19秒前
akoo完成签到,获得积分10
19秒前
19秒前
Lori发布了新的文献求助10
20秒前
落后的楼房完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
22秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
蓝天应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598857
求助须知:如何正确求助?哪些是违规求助? 4684254
关于积分的说明 14834399
捐赠科研通 4665126
什么是DOI,文献DOI怎么找? 2537490
邀请新用户注册赠送积分活动 1504943
关于科研通互助平台的介绍 1470655