RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 哲学 语言学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier]
卷期号:657: 120007-120007 被引量:47
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熠旅完成签到,获得积分10
刚刚
zone54188发布了新的文献求助10
刚刚
刚刚
KP关闭了KP文献求助
刚刚
淡然的茹嫣完成签到,获得积分10
刚刚
acfun发布了新的文献求助10
刚刚
LHW完成签到,获得积分10
1秒前
开心孤容完成签到,获得积分10
1秒前
lixiao完成签到,获得积分10
1秒前
勤恳如雪关注了科研通微信公众号
1秒前
郑成灿发布了新的文献求助10
1秒前
1秒前
背影依旧那么帅完成签到,获得积分10
2秒前
zhouzehua1003完成签到,获得积分10
2秒前
端庄的奇异果完成签到 ,获得积分10
2秒前
Stephanie发布了新的文献求助30
2秒前
2秒前
脑洞疼应助想不出新昵称采纳,获得10
3秒前
4秒前
4秒前
去玩儿发布了新的文献求助10
4秒前
杨震发布了新的文献求助10
4秒前
科研通AI6应助chenping_an采纳,获得10
4秒前
大模型应助紫文采纳,获得10
4秒前
J-R发布了新的文献求助10
4秒前
噔噔蹬发布了新的文献求助10
4秒前
5秒前
萧瑟处完成签到,获得积分10
5秒前
科研通AI6应助精明丹翠采纳,获得10
6秒前
6秒前
嘿嘿发布了新的文献求助10
6秒前
852应助sss采纳,获得10
7秒前
7秒前
GGboooond发布了新的文献求助10
7秒前
平常囧完成签到,获得积分10
7秒前
7秒前
轩辕完成签到 ,获得积分10
7秒前
赘婿应助ranhao采纳,获得10
7秒前
7秒前
雪茶发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978