亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 哲学 语言学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier]
卷期号:657: 120007-120007 被引量:49
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桦奕兮完成签到 ,获得积分10
4秒前
CWY发布了新的文献求助50
14秒前
彭于晏应助wdsgkfjhn采纳,获得10
23秒前
飞天大南瓜完成签到,获得积分10
37秒前
终归完成签到 ,获得积分10
42秒前
42秒前
MchemG应助科研通管家采纳,获得20
49秒前
MchemG应助科研通管家采纳,获得20
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
辉辉应助科研通管家采纳,获得10
49秒前
55秒前
57秒前
Epiphany发布了新的文献求助10
1分钟前
13633501455完成签到 ,获得积分10
1分钟前
1分钟前
犬来八荒发布了新的文献求助10
1分钟前
1分钟前
Epiphany完成签到,获得积分10
1分钟前
1分钟前
上官若男应助温婉的凝雁采纳,获得10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
温婉的凝雁完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
王玉发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Cherry发布了新的文献求助10
3分钟前
3分钟前
昌莆完成签到 ,获得积分10
3分钟前
3分钟前
冉亦完成签到,获得积分10
3分钟前
搜集达人应助null采纳,获得10
3分钟前
可爱的函函应助香菜肉丸采纳,获得10
3分钟前
3分钟前
平淡映秋发布了新的文献求助10
3分钟前
focus完成签到 ,获得积分10
3分钟前
香菜肉丸发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091