RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 哲学 语言学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier BV]
卷期号:657: 120007-120007 被引量:33
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
dove完成签到,获得积分10
3秒前
大模型应助陈洋采纳,获得10
3秒前
3秒前
cencen发布了新的文献求助10
5秒前
6秒前
dove发布了新的文献求助10
9秒前
田様应助wwz采纳,获得20
10秒前
11秒前
紫麒麟完成签到,获得积分10
12秒前
12秒前
溜溜莓完成签到,获得积分10
14秒前
15秒前
世界尽头完成签到,获得积分10
15秒前
17秒前
华仔应助Summer采纳,获得10
17秒前
orixero应助神勇秋白采纳,获得10
17秒前
莉莉发布了新的文献求助10
18秒前
19秒前
开朗筮发布了新的文献求助10
20秒前
海绵宝宝完成签到,获得积分10
25秒前
开朗筮完成签到,获得积分10
27秒前
27秒前
27秒前
1111茗完成签到 ,获得积分20
30秒前
31秒前
锤子简历关注了科研通微信公众号
31秒前
iuu完成签到,获得积分10
31秒前
空写乐发布了新的文献求助10
31秒前
Vivian发布了新的文献求助10
32秒前
34秒前
38秒前
38秒前
41秒前
惊执虫儿发布了新的文献求助10
42秒前
灵珠学医完成签到 ,获得积分10
42秒前
锤子简历发布了新的文献求助10
44秒前
44秒前
45秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206874
求助须知:如何正确求助?哪些是违规求助? 4385090
关于积分的说明 13655640
捐赠科研通 4243471
什么是DOI,文献DOI怎么找? 2328142
邀请新用户注册赠送积分活动 1325869
关于科研通互助平台的介绍 1277979