RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 哲学 语言学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier]
卷期号:657: 120007-120007 被引量:47
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我要发nature完成签到,获得积分10
刚刚
张蓝天完成签到,获得积分20
刚刚
lax完成签到,获得积分10
刚刚
落后安露发布了新的文献求助10
刚刚
罗伊完成签到,获得积分10
1秒前
1秒前
nightgaunt发布了新的文献求助10
1秒前
感冒了发布了新的文献求助10
1秒前
卡拉米完成签到,获得积分10
2秒前
墨雨斋发布了新的文献求助30
2秒前
2秒前
科目三应助随风采纳,获得10
2秒前
友好访琴发布了新的文献求助10
2秒前
2秒前
paff发布了新的文献求助10
2秒前
2秒前
上官若男应助妞妞叫小南采纳,获得10
3秒前
Linos应助梁jj采纳,获得10
4秒前
正直的风华关注了科研通微信公众号
4秒前
4秒前
王王完成签到,获得积分20
4秒前
5秒前
李健的粉丝团团长应助123采纳,获得10
5秒前
无奈的小虾米完成签到,获得积分10
5秒前
5秒前
小闫同学发布了新的文献求助10
6秒前
7秒前
qy发布了新的文献求助10
7秒前
7秒前
7秒前
paopao完成签到,获得积分10
7秒前
路会飞发布了新的文献求助20
7秒前
罗伊发布了新的文献求助10
7秒前
英俊的铭应助Feng采纳,获得10
8秒前
HAL完成签到,获得积分10
8秒前
Amanda发布了新的文献求助20
8秒前
梁jj应助简单采纳,获得50
9秒前
结构完成签到,获得积分20
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545904
求助须知:如何正确求助?哪些是违规求助? 4631873
关于积分的说明 14623268
捐赠科研通 4573585
什么是DOI,文献DOI怎么找? 2507662
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455606