RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 哲学 语言学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier]
卷期号:657: 120007-120007 被引量:49
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
老福贵儿应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
方法完成签到,获得积分10
1秒前
清飞完成签到,获得积分20
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
hahahaman发布了新的文献求助10
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
卢文强发布了新的文献求助10
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
慕青应助Zarc采纳,获得10
2秒前
3秒前
ADDDGDD发布了新的文献求助10
4秒前
NexusExplorer应助幽默的丹雪采纳,获得10
4秒前
啊懂发布了新的文献求助10
4秒前
4秒前
算命先生发布了新的文献求助10
4秒前
4秒前
小蘑菇应助AY采纳,获得10
4秒前
4秒前
温暖听安完成签到,获得积分10
5秒前
ashley发布了新的文献求助10
5秒前
Hello应助高亚楠采纳,获得10
5秒前
5秒前
安静柚子发布了新的文献求助10
5秒前
5秒前
复杂的语蕊完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853