DT-F Transformer: Dual transpose fusion transformer for polarization image fusion

融合 变压器 计算机科学 图像融合 信息丢失 人工智能 计算机视觉 模式识别(心理学) 图像(数学) 物理 电压 哲学 语言学 量子力学
作者
Jinyang Liu,Shutao Li,Renwei Dian,Song Ze
出处
期刊:Information Fusion [Elsevier BV]
卷期号:106: 102274-102274 被引量:6
标识
DOI:10.1016/j.inffus.2024.102274
摘要

Polarization image fusion generates fusion image with richer texture and intensity information by utilizing images with different polarization directions. To obtain more accurate and comprehensive complementary information from different source images, a new polarization image fusion method is proposed. It fuses the degree of linear polarization (DoLP) image and the intensity image (S0) by using a proposed dual transfer fusion transformer (DT-F Transformer) to excavate the complementary information from different source images. Specifically, the DT-F Transformer generates two transposed attention maps based on the source images, which have different global dependency relationships. These attention maps are used to query complementary information of the fusion features. After fusing the complementary information, a multi-scale feature refinement network is employed to capture local detailed information. Besides, a gradient median enhancement loss function is proposed to enhance the ability of the network to resist redundant information interference To enhance the feature extraction ability of the network in regions with low information density, the gradient median enhancement loss function is used in conjunction with the meticulous reconstruction loss function. Furthermore, we construct a dataset called PIF-dataset as a new benchmark for polarization image fusion evaluation, which is available at https://github.com/1318133/PIF-dataset. The effectiveness and generalization of the proposed method are validated on different datasets, and experimental results showed that the proposed method has better information preservation ability and achieves better visual effects compared to other advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助天边采纳,获得10
1秒前
2秒前
Hello应助pgdddh采纳,获得10
4秒前
5秒前
7秒前
dd发布了新的文献求助20
9秒前
tanglu发布了新的文献求助10
9秒前
10秒前
wang_qi完成签到,获得积分20
13秒前
14秒前
薄饼哥丶发布了新的文献求助10
16秒前
吃点红糖馒头完成签到,获得积分10
18秒前
研友_VZG7GZ应助蒋丞采纳,获得10
18秒前
sleep完成签到,获得积分10
19秒前
19秒前
yangyl完成签到,获得积分10
19秒前
闪闪的迎海完成签到,获得积分10
20秒前
当代鲁迅发布了新的文献求助10
20秒前
1111应助吃点红糖馒头采纳,获得20
21秒前
24秒前
24秒前
25秒前
xili发布了新的文献求助10
27秒前
qqqq发布了新的文献求助10
30秒前
xymm1204完成签到,获得积分10
31秒前
Lucas应助闪闪的迎海采纳,获得10
32秒前
星辰大海应助Zjx采纳,获得10
33秒前
dd完成签到,获得积分10
34秒前
35秒前
薄饼哥丶完成签到,获得积分10
36秒前
37秒前
科研通AI5应助杰瑞采纳,获得10
39秒前
酷酷小子发布了新的文献求助10
40秒前
40秒前
孙燕应助zsx采纳,获得10
43秒前
44秒前
xili完成签到,获得积分10
44秒前
天天快乐应助科研通管家采纳,获得10
44秒前
SHAO应助科研通管家采纳,获得10
45秒前
绝情继父应助科研通管家采纳,获得10
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652