材料科学
压电
复合材料
振动
复合数
阻尼能力
聚氨酯
约束层阻尼
延展性(地球科学)
涂层
振动控制
声学
蠕动
合金
物理
作者
Wenzheng Chen,Xiaoling Lu,Qitan Zheng,Dongsen Hu,Yujie Chen,Qili Yu,Qunfu Fan,Hua Li,Hezhou Liu
标识
DOI:10.1021/acsami.3c16667
摘要
Presently, piezoelectric materials are gradually playing a significant role within composites to improve the damping and vibrational attenuation capacities of host composites. Previous studies paid attention to isolating the mechanical damping contribution and piezoelectric contribution of polymer-based piezoelectric composites (PPCs). However, reports detailing the piezoelectric damping of such materials have not paid sufficient attention to the technologies and methods to improve the piezoelectric damping of PPCs. In this study, we propose novel damping polyurethane (PU)-based piezoelectric composites with carbon-coated piezoelectric fillers (PZT@C/PU) with improved piezoelectric damping ability. The mechanical damping and piezoelectric damping of composites were theoretically decoupled, and we elaborate on the mechanism enhancing piezoelectric damping through the carbon coating strategy by comparing with the composites with nonpiezoelectric fillers. The as-fabricated core–shell structure having an optimized interface exhibits the proposed PZT@C/PU composite pads with relatively prominent damping ability (loss factor tan δmax = 1.0, tan δRT = 0.3), ductility (400.63%), and sound isolating behavior (transmission loss TL > 23 dB). Moreover, the vibration test results of as-fabricated sandwich structural PZT@C/PU composite damping devices exhibit outstanding vibration attenuating behavior (damping ratio ζ = 0.198). The study herein validates that the carbon shell coated on piezoelectric fillers would effectively increase damping performance of PU-based piezoelectric composites by the enhancement of piezoelectric performance caused by carbon coating piezoelectric fillers, which indicates that this material has potential for future applications in the field of vibration and noise reduction, thereby driving forward and expanding the fundamental understanding in the area of PPCs damping and vibration attenuation.
科研通智能强力驱动
Strongly Powered by AbleSci AI