流出物
前馈
污水处理
计算机科学
人工神经网络
人工智能
水质
深度学习
卷积神经网络
废水
前馈神经网络
机器学习
环境工程
环境科学
工程类
控制工程
生物
生态学
作者
Yifan Xie,Y. Chen,Qing Wei,Hailong Yin
出处
期刊:Water Research
[Elsevier]
日期:2023-12-29
卷期号:250: 121092-121092
被引量:14
标识
DOI:10.1016/j.watres.2023.121092
摘要
Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI