A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant

流出物 前馈 污水处理 计算机科学 人工神经网络 人工智能 水质 深度学习 卷积神经网络 废水 前馈神经网络 机器学习 环境工程 环境科学 工程类 控制工程 生态学 生物
作者
Yifan Xie,Y. Chen,Qing Wei,Hailong Yin
出处
期刊:Water Research [Elsevier]
卷期号:250: 121092-121092 被引量:81
标识
DOI:10.1016/j.watres.2023.121092
摘要

Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小石完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
明理的寒云完成签到,获得积分10
1秒前
Cynthia完成签到,获得积分10
2秒前
醉熏的水绿完成签到 ,获得积分10
4秒前
拾柒完成签到,获得积分10
4秒前
xinxin完成签到,获得积分10
4秒前
popvich完成签到,获得积分0
4秒前
hotongue发布了新的文献求助10
5秒前
ywhys发布了新的文献求助10
5秒前
浮游应助陈思雨采纳,获得10
5秒前
悦耳亦云完成签到 ,获得积分10
5秒前
una发布了新的文献求助10
6秒前
7秒前
7秒前
赘婿应助加油呀采纳,获得10
7秒前
chen完成签到 ,获得积分10
7秒前
科研通AI6应助郑木木采纳,获得10
8秒前
8秒前
8秒前
Gaowenjie发布了新的文献求助10
11秒前
脑洞疼应助朱小燕采纳,获得10
11秒前
11秒前
11秒前
包容念文完成签到,获得积分10
12秒前
12秒前
13秒前
天天快乐应助xyx采纳,获得10
14秒前
14秒前
SYSUer完成签到,获得积分10
14秒前
ahui完成签到 ,获得积分10
14秒前
14秒前
14秒前
Cherish完成签到,获得积分10
15秒前
啦啦啦完成签到 ,获得积分10
15秒前
xiaoan完成签到,获得积分10
16秒前
huoo完成签到,获得积分10
16秒前
NexusExplorer应助Gaowenjie采纳,获得10
16秒前
加油呀发布了新的文献求助10
16秒前
彭于晏应助hotongue采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707