A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant

流出物 前馈 污水处理 计算机科学 人工神经网络 人工智能 水质 深度学习 卷积神经网络 废水 前馈神经网络 机器学习 环境工程 环境科学 工程类 控制工程 生物 生态学
作者
Yifan Xie,Y. Chen,Qing Wei,Hailong Yin
出处
期刊:Water Research [Elsevier]
卷期号:250: 121092-121092 被引量:14
标识
DOI:10.1016/j.watres.2023.121092
摘要

Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
小螃蟹发布了新的文献求助10
2秒前
kid1412完成签到 ,获得积分10
4秒前
5秒前
7秒前
jacob258发布了新的文献求助10
7秒前
子车茗应助十六月亮采纳,获得20
8秒前
8秒前
spring发布了新的文献求助10
10秒前
专注学习发布了新的文献求助10
10秒前
大气傲易完成签到 ,获得积分10
10秒前
11秒前
科研通AI2S应助Tian&采纳,获得10
11秒前
小芳应助邪恶小天使采纳,获得10
11秒前
12秒前
12秒前
天天快乐应助Fanny采纳,获得10
15秒前
酷酷的数据线完成签到,获得积分10
15秒前
16秒前
彭于彦祖应助阳佟半仙采纳,获得20
17秒前
zcg完成签到,获得积分10
18秒前
18秒前
18秒前
iNk应助shanjianjie采纳,获得20
18秒前
南风北至完成签到,获得积分10
18秒前
duou发布了新的文献求助30
19秒前
19秒前
桐桐应助ww采纳,获得10
20秒前
20秒前
研小白发布了新的文献求助10
22秒前
22秒前
SciGPT应助卜谷雪采纳,获得10
22秒前
完美世界应助朴实的天佑采纳,获得10
22秒前
海绵宝宝发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
领导范儿应助酷酷夜阑采纳,获得10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626