A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant

流出物 前馈 污水处理 计算机科学 人工神经网络 人工智能 水质 深度学习 卷积神经网络 废水 前馈神经网络 机器学习 环境工程 环境科学 工程类 控制工程 生态学 生物
作者
Yifan Xie,Y. Chen,Qing Wei,Hailong Yin
出处
期刊:Water Research [Elsevier]
卷期号:250: 121092-121092 被引量:74
标识
DOI:10.1016/j.watres.2023.121092
摘要

Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JTHan完成签到,获得积分10
刚刚
实验耗材完成签到 ,获得积分10
刚刚
补药学习完成签到,获得积分10
刚刚
刚刚
传奇3应助洽洽瓜子shine采纳,获得10
刚刚
嗝嗝完成签到,获得积分10
刚刚
1秒前
1秒前
miaomiao完成签到,获得积分10
1秒前
Charon发布了新的文献求助30
1秒前
agrlook完成签到,获得积分10
2秒前
2秒前
DQQ完成签到,获得积分10
2秒前
MR_Z完成签到,获得积分10
2秒前
2秒前
123完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
yangmingyu完成签到,获得积分10
4秒前
流光完成签到,获得积分10
4秒前
虚幻百川完成签到,获得积分10
4秒前
Chany完成签到 ,获得积分10
4秒前
4秒前
zsy发布了新的文献求助10
4秒前
风暴之灵完成签到,获得积分10
5秒前
冷如松发布了新的文献求助30
5秒前
lanlan发布了新的文献求助30
6秒前
zmz发布了新的文献求助50
6秒前
脑洞疼应助月亮不知道采纳,获得20
6秒前
7秒前
maclogos发布了新的文献求助10
7秒前
叹千泠发布了新的文献求助30
7秒前
hd完成签到,获得积分10
8秒前
8秒前
8秒前
共享精神应助微风往事采纳,获得10
8秒前
好想睡觉发布了新的文献求助10
8秒前
迷路赛君完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005