A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant

流出物 前馈 污水处理 计算机科学 人工神经网络 人工智能 水质 深度学习 卷积神经网络 废水 前馈神经网络 机器学习 环境工程 环境科学 工程类 控制工程 生物 生态学
作者
Yifan Xie,Y. Chen,Qing Wei,Hailong Yin
出处
期刊:Water Research [Elsevier]
卷期号:250: 121092-121092 被引量:81
标识
DOI:10.1016/j.watres.2023.121092
摘要

Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助cjjwei采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
静静发布了新的文献求助10
3秒前
5秒前
5秒前
娜娜完成签到,获得积分10
6秒前
ngsq完成签到,获得积分10
6秒前
7秒前
小七发布了新的文献求助10
7秒前
西门戆戆完成签到,获得积分10
7秒前
Rainor关注了科研通微信公众号
8秒前
自由访梦发布了新的文献求助30
8秒前
一二三发布了新的文献求助10
8秒前
wanci应助ccc采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
科目三应助神勇的又槐采纳,获得10
11秒前
疯丫头完成签到 ,获得积分10
13秒前
13秒前
陈征发布了新的文献求助10
13秒前
15秒前
15秒前
正直静曼完成签到 ,获得积分10
16秒前
曾维权发布了新的文献求助10
16秒前
jasmine发布了新的文献求助10
16秒前
17秒前
17秒前
徐风年完成签到,获得积分10
17秒前
18秒前
星辰大海应助成就的书包采纳,获得10
18秒前
烟花应助美好斓采纳,获得10
18秒前
cxxue发布了新的文献求助10
19秒前
Twelve发布了新的文献求助20
19秒前
20秒前
clamon发布了新的文献求助10
22秒前
Much发布了新的文献求助200
23秒前
24秒前
24秒前
潇洒冬云关注了科研通微信公众号
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705070
求助须知:如何正确求助?哪些是违规求助? 5160498
关于积分的说明 15243798
捐赠科研通 4858886
什么是DOI,文献DOI怎么找? 2607466
邀请新用户注册赠送积分活动 1558571
关于科研通互助平台的介绍 1516188