A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant

流出物 前馈 污水处理 计算机科学 人工神经网络 人工智能 水质 深度学习 卷积神经网络 废水 前馈神经网络 机器学习 环境工程 环境科学 工程类 控制工程 生态学 生物
作者
Yifan Xie,Y. Chen,Qing Wei,Hailong Yin
出处
期刊:Water Research [Elsevier BV]
卷期号:250: 121092-121092 被引量:32
标识
DOI:10.1016/j.watres.2023.121092
摘要

Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tkzzz完成签到,获得积分10
刚刚
博修发布了新的文献求助30
1秒前
霏冉完成签到,获得积分10
1秒前
1秒前
旭爸爸发布了新的文献求助10
1秒前
医路有你完成签到 ,获得积分10
1秒前
HJJHJH发布了新的文献求助10
1秒前
mmc完成签到,获得积分10
2秒前
Felice完成签到,获得积分10
2秒前
2秒前
和abc完成签到,获得积分10
3秒前
KanmenRider完成签到,获得积分10
3秒前
刘子发布了新的文献求助10
4秒前
古德辣克完成签到,获得积分10
4秒前
4秒前
停婷完成签到,获得积分10
4秒前
NINISO完成签到,获得积分10
5秒前
梁家瑜完成签到,获得积分10
5秒前
搜集达人应助刘岩松采纳,获得10
5秒前
遐蝶发布了新的文献求助10
5秒前
橙子完成签到,获得积分10
6秒前
Oo。发布了新的文献求助50
6秒前
FashionBoy应助旭爸爸采纳,获得10
6秒前
6秒前
科研通AI2S应助YYY采纳,获得30
7秒前
7秒前
流白发布了新的文献求助10
8秒前
yan完成签到,获得积分10
8秒前
wx发布了新的文献求助10
8秒前
8秒前
欢呼灰狼完成签到,获得积分10
8秒前
领导范儿应助黄晓荷采纳,获得10
9秒前
1762120完成签到,获得积分10
9秒前
研友_8Yo3dn完成签到,获得积分10
9秒前
含糊的画板完成签到,获得积分10
9秒前
chenxi完成签到 ,获得积分10
9秒前
傲娇老五完成签到,获得积分10
10秒前
健壮熊猫完成签到,获得积分10
10秒前
WuchangI发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650