A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant

流出物 前馈 污水处理 计算机科学 人工神经网络 人工智能 水质 深度学习 卷积神经网络 废水 前馈神经网络 机器学习 环境工程 环境科学 工程类 控制工程 生物 生态学
作者
Yifan Xie,Y. Chen,Qing Wei,Hailong Yin
出处
期刊:Water Research [Elsevier]
卷期号:250: 121092-121092 被引量:81
标识
DOI:10.1016/j.watres.2023.121092
摘要

Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Han完成签到,获得积分10
1秒前
1秒前
科目三应助yuwen采纳,获得10
3秒前
4秒前
LIU完成签到 ,获得积分10
4秒前
杨春末完成签到,获得积分10
5秒前
lanshi完成签到,获得积分10
6秒前
wanci应助谦让的靖巧采纳,获得10
7秒前
玄魁发布了新的文献求助10
8秒前
木子李完成签到,获得积分10
8秒前
12秒前
13秒前
13秒前
oomph完成签到,获得积分10
14秒前
NexusExplorer应助mm采纳,获得10
15秒前
15秒前
koong完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
CodeCraft应助mark采纳,获得10
16秒前
疯狂的大闸蟹完成签到,获得积分10
17秒前
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
yuwen发布了新的文献求助10
17秒前
17秒前
17秒前
ding应助科研通管家采纳,获得30
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
刘丰恺发布了新的文献求助10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
koong发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675220
求助须知:如何正确求助?哪些是违规求助? 4944256
关于积分的说明 15152011
捐赠科研通 4834395
什么是DOI,文献DOI怎么找? 2589462
邀请新用户注册赠送积分活动 1543115
关于科研通互助平台的介绍 1501056