Sponet: solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis

启发式 强化学习 计算机科学 马尔可夫决策过程 人工智能 组分(热力学) 过程(计算) 决策问题 决策支持系统 机器学习 数学优化 运筹学 马尔可夫过程 工程类 数学 算法 物理 操作系统 统计 热力学
作者
Haojian Liang,Shaohua Wang,Huilai Li,Liang Zhou,Hechang Chen,Xueyan Zhang,Xu Chen
出处
期刊:International Journal of Digital Earth [Informa]
卷期号:17 (1) 被引量:14
标识
DOI:10.1080/17538947.2023.2299211
摘要

Urban spatial decision analysis is a critical component of spatial optimization and has profound implications in various fields, such as urban planning, logistics distribution, and emergency management. Existing studies on urban facility location problems are based on heuristic methods. However, few studies have used deep learning to solve this problem. In this study, we introduce a unified framework, SpoNet. It combines the characteristics of location problems with a deep learning model SpoNet can solve spatial optimization problems: p-Median, p-Center, and maximum covering location problem (MCLP). It involves modeling each problem as a Markov Decision Process and using deep reinforcement learning to train the model. To improve the training efficiency and performance, we integrated knowledge SpoNet. The results demonstrated that the proposed method has several advantages. First, it can provide a feasible solution without the need for complex calculations. Second, integrating the knowledge model improved the overall performance of the model. Finally, SpoNet is more accurate than heuristic methods and significantly faster than modern solvers, with a solution time improvement of more than 20 times. Our method has a promising application in urban spatial decision analysis, and further has a positive impact on sustainable cities and communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
善良的从霜完成签到,获得积分20
6秒前
Hello应助ff采纳,获得10
8秒前
9秒前
9秒前
JamesPei应助123采纳,获得10
13秒前
桐桐应助麻雀采纳,获得10
14秒前
活泼的棉花糖完成签到,获得积分10
15秒前
15秒前
小皮皮完成签到,获得积分10
15秒前
学术骗子小刚完成签到,获得积分10
16秒前
无花果应助山丘采纳,获得10
17秒前
任性的乐天完成签到 ,获得积分10
18秒前
花花花花发布了新的文献求助10
20秒前
IceT完成签到,获得积分10
20秒前
21秒前
且从容完成签到,获得积分10
21秒前
22秒前
22秒前
莲蓬发布了新的文献求助10
23秒前
Bing发布了新的文献求助10
25秒前
Orange应助科研里的一条鱼采纳,获得10
27秒前
月半完成签到,获得积分10
27秒前
123发布了新的文献求助10
27秒前
yepeach发布了新的文献求助10
27秒前
27秒前
27秒前
28秒前
三国杀校老弟完成签到,获得积分10
28秒前
Liwia发布了新的文献求助10
29秒前
30秒前
34秒前
勤恳幻然发布了新的文献求助10
34秒前
英姑应助Dawn采纳,获得10
34秒前
赘婿应助花花花花采纳,获得50
34秒前
小胖子发布了新的文献求助10
34秒前
SciGPT应助陶醉小土豆采纳,获得10
36秒前
37秒前
Yey完成签到,获得积分10
37秒前
38秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267535
求助须知:如何正确求助?哪些是违规求助? 2906979
关于积分的说明 8340317
捐赠科研通 2577592
什么是DOI,文献DOI怎么找? 1401153
科研通“疑难数据库(出版商)”最低求助积分说明 655000
邀请新用户注册赠送积分活动 633967