Sponet: solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis

启发式 强化学习 计算机科学 马尔可夫决策过程 人工智能 组分(热力学) 过程(计算) 决策问题 决策支持系统 机器学习 数学优化 运筹学 马尔可夫过程 工程类 数学 算法 统计 物理 热力学 操作系统
作者
Haojian Liang,Shaohua Wang,Huilai Li,Liang Zhou,Hechang Chen,Xueyan Zhang,Xu Chen
出处
期刊:International Journal of Digital Earth [Informa]
卷期号:17 (1) 被引量:14
标识
DOI:10.1080/17538947.2023.2299211
摘要

Urban spatial decision analysis is a critical component of spatial optimization and has profound implications in various fields, such as urban planning, logistics distribution, and emergency management. Existing studies on urban facility location problems are based on heuristic methods. However, few studies have used deep learning to solve this problem. In this study, we introduce a unified framework, SpoNet. It combines the characteristics of location problems with a deep learning model SpoNet can solve spatial optimization problems: p-Median, p-Center, and maximum covering location problem (MCLP). It involves modeling each problem as a Markov Decision Process and using deep reinforcement learning to train the model. To improve the training efficiency and performance, we integrated knowledge SpoNet. The results demonstrated that the proposed method has several advantages. First, it can provide a feasible solution without the need for complex calculations. Second, integrating the knowledge model improved the overall performance of the model. Finally, SpoNet is more accurate than heuristic methods and significantly faster than modern solvers, with a solution time improvement of more than 20 times. Our method has a promising application in urban spatial decision analysis, and further has a positive impact on sustainable cities and communities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最好是完成签到,获得积分10
刚刚
刚刚
刚刚
汉桑波欸完成签到,获得积分10
刚刚
粗暴的达发布了新的文献求助10
1秒前
热心的薯片完成签到,获得积分10
1秒前
大好人完成签到 ,获得积分10
1秒前
犹豫酸奶发布了新的文献求助10
2秒前
2秒前
张一凡发布了新的文献求助10
2秒前
聪明新筠完成签到,获得积分10
2秒前
wjw完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
汉堡包应助wuyoung采纳,获得10
3秒前
牛牛完成签到,获得积分10
3秒前
黑白芋头发布了新的文献求助10
3秒前
哇塞爹完成签到,获得积分10
3秒前
老实盼海发布了新的文献求助10
3秒前
冷酷含羞草完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
魔幻傲霜完成签到,获得积分10
3秒前
YSZ完成签到,获得积分10
4秒前
xc完成签到,获得积分10
4秒前
4秒前
小西瓜发布了新的文献求助10
4秒前
5秒前
刻苦莫言完成签到,获得积分10
5秒前
miao发布了新的文献求助20
5秒前
5秒前
共勉YOUNG完成签到,获得积分10
6秒前
CX发布了新的文献求助10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
TYY应助听话的含羞草采纳,获得10
7秒前
zy发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005