Sponet: solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis

启发式 强化学习 计算机科学 马尔可夫决策过程 人工智能 组分(热力学) 过程(计算) 决策问题 决策支持系统 机器学习 数学优化 运筹学 马尔可夫过程 工程类 数学 算法 统计 物理 热力学 操作系统
作者
Haojian Liang,Shaohua Wang,Huilai Li,Liang Zhou,Hechang Chen,Xueyan Zhang,Xu Chen
出处
期刊:International Journal of Digital Earth [Taylor & Francis]
卷期号:17 (1) 被引量:14
标识
DOI:10.1080/17538947.2023.2299211
摘要

Urban spatial decision analysis is a critical component of spatial optimization and has profound implications in various fields, such as urban planning, logistics distribution, and emergency management. Existing studies on urban facility location problems are based on heuristic methods. However, few studies have used deep learning to solve this problem. In this study, we introduce a unified framework, SpoNet. It combines the characteristics of location problems with a deep learning model SpoNet can solve spatial optimization problems: p-Median, p-Center, and maximum covering location problem (MCLP). It involves modeling each problem as a Markov Decision Process and using deep reinforcement learning to train the model. To improve the training efficiency and performance, we integrated knowledge SpoNet. The results demonstrated that the proposed method has several advantages. First, it can provide a feasible solution without the need for complex calculations. Second, integrating the knowledge model improved the overall performance of the model. Finally, SpoNet is more accurate than heuristic methods and significantly faster than modern solvers, with a solution time improvement of more than 20 times. Our method has a promising application in urban spatial decision analysis, and further has a positive impact on sustainable cities and communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助念初采纳,获得10
刚刚
1秒前
1秒前
Xiaofeng关注了科研通微信公众号
2秒前
wmt完成签到,获得积分10
3秒前
传奇3应助咔咔咔采纳,获得10
3秒前
3秒前
3秒前
tdtk发布了新的文献求助20
4秒前
WuzJ1ee完成签到,获得积分20
4秒前
科研通AI6应助追寻的宛er采纳,获得10
4秒前
5秒前
储物间完成签到,获得积分10
5秒前
5秒前
hdbys发布了新的文献求助30
5秒前
5秒前
RNNNLL完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
长夜变清早完成签到,获得积分10
8秒前
8秒前
zgd发布了新的文献求助10
8秒前
在水一方应助sos采纳,获得10
8秒前
嘻嘻发布了新的文献求助10
8秒前
谷雨秋发布了新的文献求助10
11秒前
11秒前
任性的梦菲完成签到,获得积分10
12秒前
13秒前
今后应助张雯雯采纳,获得10
13秒前
量子星尘发布了新的文献求助80
14秒前
Ai77发布了新的文献求助10
14秒前
Sallxy发布了新的文献求助10
14秒前
Dormantparner发布了新的文献求助10
14秒前
15秒前
KouZL发布了新的文献求助30
15秒前
科研通AI6应助满家归寻采纳,获得10
15秒前
16秒前
一口气吃七碗饭完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871