Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage

机器学习 人工智能 随机森林 支持向量机 逻辑回归 超参数 计算机科学 接收机工作特性 交叉验证 特征(语言学) 医学 哲学 语言学
作者
Zhi Geng,Chaoyi Yang,Zi‐Ye Zhao,Yibing Yan,Tao Guo,Chaofan Liu,Aimei Wu,Xingqi Wu,Ling Wei,Yanghua Tian,Panpan Hu,Kai Wang
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12967-024-04896-3
摘要

Abstract Background Spontaneous intracerebral hemorrhage (sICH) is associated with significant mortality and morbidity. Predicting the prognosis of patients with sICH remains an important issue, which significantly affects treatment decisions. Utilizing readily available clinical parameters to anticipate the unfavorable prognosis of sICH patients holds notable clinical significance. This study employs five machine learning algorithms to establish a practical platform for the prediction of short-term prognostic outcomes in individuals afflicted with sICH. Methods Within the framework of this retrospective analysis, the model underwent training utilizing data gleaned from 413 cases from the training center, with subsequent validation employing data from external validation center. Comprehensive clinical information, laboratory analysis results, and imaging features pertaining to sICH patients were harnessed as training features for machine learning. We developed and validated the model efficacy using all the selected features of the patients using five models: Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), XGboost and LightGBM, respectively. The process of Recursive Feature Elimination (RFE) was executed for optimal feature screening. An internal five-fold cross-validation was employed to pinpoint the most suitable hyperparameters for the model, while an external five-fold cross-validation was implemented to discern the machine learning model demonstrating the superior average performance. Finally, the machine learning model with the best average performance is selected as our final model while using it for external validation. Evaluation of the machine learning model’s performance was comprehensively conducted through the utilization of the ROC curve, accuracy, and other relevant indicators. The SHAP diagram was utilized to elucidate the variable importance within the model, culminating in the amalgamation of the above metrics to discern the most succinct features and establish a practical prognostic prediction platform. Results A total of 413 patients with sICH patients were collected in the training center, of which 180 were patients with poor prognosis. A total of 74 patients with sICH were collected in the external validation center, of which 26 were patients with poor prognosis. Within the training set, the test set AUC values for SVM, LR, RF, XGBoost, and LightGBM models were recorded as 0.87, 0.896, 0.916, 0.885, and 0.912, respectively. The best average performance of the machine learning models in the training set was the RF model (average AUC: 0.906 ± 0.029, P < 0.01). The model still maintains a good performance in the external validation center, with an AUC of 0.817 (95% CI 0.705–0.928). Pertaining to feature importance for short-term prognostic attributes of sICH patients, the NIHSS score reigned supreme, succeeded by AST, Age, white blood cell, and hematoma volume, among others. In culmination, guided by the RF model’s variable importance weight and the model's ROC curve insights, the NIHSS score, AST, Age, white blood cell, and hematoma volume were integrated to forge a short-term prognostic prediction platform tailored for sICH patients. Conclusion We constructed a prediction model based on the results of the RF model incorporating five clinically accessible predictors with reliable predictive efficacy for the short-term prognosis of sICH patients. Meanwhile, the performance of the external validation set was also more stable, which can be used for accurate prediction of short-term prognosis of sICH patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang发布了新的文献求助10
1秒前
1秒前
1秒前
rose完成签到,获得积分10
1秒前
在水一方应助肾虚泥巴狗采纳,获得10
2秒前
2秒前
高挑的秋天关注了科研通微信公众号
2秒前
2秒前
bkagyin应助wbbb采纳,获得10
3秒前
3秒前
斯文败类应助大胆的凡儿采纳,获得10
3秒前
戚立果完成签到 ,获得积分10
4秒前
paparazzi221应助mmyhn采纳,获得10
5秒前
李健应助owllll采纳,获得10
5秒前
思源应助叶十七采纳,获得10
5秒前
郑嘻嘻发布了新的文献求助30
5秒前
5秒前
6秒前
九耳久知完成签到,获得积分10
7秒前
7秒前
7秒前
认真科研发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
小冯发布了新的文献求助10
10秒前
11秒前
英俊鼠标发布了新的文献求助10
11秒前
江璃发布了新的文献求助10
12秒前
科研通AI2S应助mikasa采纳,获得10
14秒前
wbbb发布了新的文献求助10
14秒前
希望天下0贩的0应助小冯采纳,获得10
15秒前
小墨发布了新的文献求助80
15秒前
无敌吴硕发布了新的文献求助10
15秒前
852应助iconvin采纳,获得10
16秒前
科研通AI2S应助闪闪糖豆采纳,获得10
17秒前
田様应助开朗的翠彤采纳,获得10
17秒前
斯文败类应助英俊鼠标采纳,获得10
17秒前
123发布了新的文献求助10
17秒前
烟花应助kelvin采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870