Quantitative omnigenic model discovers interpretable genome-wide associations

全基因组关联研究 表达数量性状基因座 数量性状位点 特质 计算生物学 基因调控网络 生物 差异(会计) 遗传关联 基因组 协方差 基因 统计能力 遗传学 统计模型 进化生物学 计算机科学 基因表达 统计 数学 机器学习 单核苷酸多态性 会计 基因型 业务 程序设计语言
作者
Natália Ružičková,Michal Hledík,Gašper Tkačik
标识
DOI:10.1101/2024.02.01.578486
摘要

Abstract As their statistical power grows, genome-wide association studies (GWAS) have identified an increasing number of loci underlying quantitative traits of interest. These loci are scattered throughout the genome and are individually responsible only for small fractions of the total heritable trait variance. The recently proposed omnigenic model provides a conceptual framework to explain these observations by postulating that numerous distant loci contribute to each complex trait via effect propagation through intracellular regulatory networks. We formalize this conceptual framework by proposing the “quantitative omnigenic model” (QOM), a statistical model that combines prior knowledge of the regulatory network topology with genomic data. By applying our model to gene expression traits in yeast, we demonstrate that QOM achieves similar gene expression prediction performance to traditional GWAS with hundreds of times less parameters, while simultaneously extracting candidate causal and quantitative chains of effect propagation through the regulatory network for every individual gene. We estimate the fraction of heritable trait variance in cis- and in trans- , break the latter down by effect propagation order, assess the trans- variance not attributable to transcriptional regulation, and show that QOM correctly accounts for the low-dimensional structure of gene expression covariance. We furthermore demonstrate the relevance of QOM for systems biology, by employing it as a statistical test for the quality of regulatory network reconstructions, and linking it to the propagation of non-transcriptional (including environmental) effects. Significance statement Genetic variation leads to differences in traits implicated in health and disease. Identifying genetic variants associated with these traits is spearheaded by “genome-wide association studies” (GWAS) – statistically rigorous procedures whose power has grown with the number of genotyped samples. Nevertheless, GWAS have a substantial shortcoming: they are ill-equipped to detect the causal basis and reveal the complex systemic mechanisms of polygenic traits. Even a single genetic change can propagate throughout the entire genetic regulatory network causing a myriad of spurious detections, thereby significantly limiting GWAS usefulness. To this end, we propose a novel statistical approach that incorporates known regulatory network information with the potential to boost interpretability of state-of-the-art genomic analyses while simultaneously extracting systems biology insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
一碗鱼发布了新的文献求助10
刚刚
1秒前
2秒前
yiyi131发布了新的文献求助10
3秒前
小马完成签到,获得积分10
3秒前
pentjy完成签到,获得积分10
3秒前
pipi发布了新的文献求助20
4秒前
coffee完成签到,获得积分10
4秒前
bkagyin应助文艺的连碧采纳,获得10
5秒前
showmaker发布了新的文献求助20
5秒前
852应助淬h采纳,获得10
6秒前
圈圈黄完成签到,获得积分10
7秒前
7秒前
pentjy发布了新的文献求助30
8秒前
冬天好大的雨完成签到,获得积分10
9秒前
一碗鱼完成签到,获得积分10
10秒前
852应助乐闻采纳,获得10
10秒前
请叫我湿人人完成签到,获得积分10
10秒前
星辰大海应助卡图兰采纳,获得10
10秒前
甜美代秋发布了新的文献求助10
11秒前
张俊敏发布了新的文献求助10
12秒前
12秒前
14秒前
王梦豪完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
包包琪发布了新的文献求助10
17秒前
18秒前
科研怪完成签到 ,获得积分10
18秒前
淬h发布了新的文献求助10
19秒前
朝朝发布了新的文献求助10
19秒前
20秒前
超级炎彬发布了新的文献求助30
21秒前
21秒前
21秒前
21秒前
22秒前
reirei应助张俊敏采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970048
求助须知:如何正确求助?哪些是违规求助? 3514739
关于积分的说明 11175783
捐赠科研通 3250115
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951