Quantitative omnigenic model discovers interpretable genome-wide associations

全基因组关联研究 表达数量性状基因座 数量性状位点 特质 计算生物学 基因调控网络 生物 差异(会计) 遗传关联 基因组 协方差 基因 统计能力 遗传学 统计模型 进化生物学 计算机科学 基因表达 统计 数学 机器学习 单核苷酸多态性 基因型 业务 会计 程序设计语言
作者
Natália Ružičková,Michal Hledík,Gašper Tkačik
标识
DOI:10.1101/2024.02.01.578486
摘要

Abstract As their statistical power grows, genome-wide association studies (GWAS) have identified an increasing number of loci underlying quantitative traits of interest. These loci are scattered throughout the genome and are individually responsible only for small fractions of the total heritable trait variance. The recently proposed omnigenic model provides a conceptual framework to explain these observations by postulating that numerous distant loci contribute to each complex trait via effect propagation through intracellular regulatory networks. We formalize this conceptual framework by proposing the “quantitative omnigenic model” (QOM), a statistical model that combines prior knowledge of the regulatory network topology with genomic data. By applying our model to gene expression traits in yeast, we demonstrate that QOM achieves similar gene expression prediction performance to traditional GWAS with hundreds of times less parameters, while simultaneously extracting candidate causal and quantitative chains of effect propagation through the regulatory network for every individual gene. We estimate the fraction of heritable trait variance in cis- and in trans- , break the latter down by effect propagation order, assess the trans- variance not attributable to transcriptional regulation, and show that QOM correctly accounts for the low-dimensional structure of gene expression covariance. We furthermore demonstrate the relevance of QOM for systems biology, by employing it as a statistical test for the quality of regulatory network reconstructions, and linking it to the propagation of non-transcriptional (including environmental) effects. Significance statement Genetic variation leads to differences in traits implicated in health and disease. Identifying genetic variants associated with these traits is spearheaded by “genome-wide association studies” (GWAS) – statistically rigorous procedures whose power has grown with the number of genotyped samples. Nevertheless, GWAS have a substantial shortcoming: they are ill-equipped to detect the causal basis and reveal the complex systemic mechanisms of polygenic traits. Even a single genetic change can propagate throughout the entire genetic regulatory network causing a myriad of spurious detections, thereby significantly limiting GWAS usefulness. To this end, we propose a novel statistical approach that incorporates known regulatory network information with the potential to boost interpretability of state-of-the-art genomic analyses while simultaneously extracting systems biology insights.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Mlwwq发布了新的文献求助10
1秒前
儒雅发布了新的文献求助10
1秒前
hai发布了新的文献求助10
1秒前
难过的水杯完成签到,获得积分20
2秒前
qiuli完成签到,获得积分10
2秒前
3秒前
情怀应助achilles采纳,获得10
3秒前
缓慢的箴完成签到,获得积分20
3秒前
CC应助houbinghua采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
ding应助feng采纳,获得10
3秒前
元2333完成签到,获得积分10
3秒前
3秒前
灵巧的斓完成签到,获得积分10
4秒前
笨笨熊发布了新的文献求助10
4秒前
Vincent完成签到,获得积分10
4秒前
小白发布了新的文献求助10
4秒前
Zxskadi完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
5秒前
李健的小迷弟应助冬灵采纳,获得10
5秒前
一个奎发布了新的文献求助10
6秒前
迅速泽洋完成签到,获得积分10
6秒前
6秒前
Owen应助chloe采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
JULY发布了新的文献求助10
9秒前
科研通AI6应助sfc999采纳,获得10
9秒前
9秒前
荣荣发布了新的文献求助10
9秒前
嘿嘿发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656