Distinguishing Trajectories and Drivers of Vegetated Ecosystems in China's Loess Plateau

生态系统 生产力 气候变化 环境科学 生态学 城市化 陆地生态系统 环境变化 黄土 自然地理学 地理 生物 经济 古生物学 宏观经济学
作者
Zhuangzhuang Wang,Bojie Fu,Xutong Wu,Shuai Wang,Yingjie Li,Yuhao Feng,Liwei Zhang,Ying Hu,Linhai Cheng,Binbin Li
出处
期刊:Earth’s Future [Wiley]
卷期号:12 (2) 被引量:9
标识
DOI:10.1029/2023ef003769
摘要

Abstract Terrestrial ecosystems can exhibit various behaviors in response to climate change and human activities. Nonlinear and abrupt shifts in ecosystems are particularly important as they indicate substantial modifications in ecosystem structure and function, posing a threat to the provision of ecosystem services. Here we distinguish between linear, curvilinear, and abrupt shifts in ecosystem productivity from 2000 to 2020 in China's Loess Plateau. We utilize spatial Random Forest models to analyze the driving factors behind these change patterns. Our findings indicate that 84.1% of the ecosystems experienced a positive change in plant productivity, while a small proportion (2.5%) exhibited a negative change. Abrupt shifts are prevalent in both positive and negative changes in ecosystem productivity, with negative changes often manifesting as abrupt shifts (79.3%). Negative changes in plant productivity, particularly the negative abrupt shifts, are primarily associated with human activities characterized by increased nighttime light and urbanization. Land conversion to forest is linked to a curvilinear trajectory in plant productivity, characterized by nonlinear changes with acceleration. Higher water availability and a wetter environment are more likely to promote positive changes in plant productivity. Moderate warming trends contribute to abrupt positive changes in plant productivity, while high warming trends are associated with increased negative abrupt and curvilinear changes. We highlight the importance of accounting for diverse change behaviors in ecosystems for the development of targeted conservation and restoration measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甄高丽完成签到,获得积分10
1秒前
积极问晴发布了新的文献求助10
1秒前
QYW发布了新的文献求助10
2秒前
领导范儿应助科研通管家采纳,获得30
3秒前
Orange应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
温柔惜筠应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
hehe应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
Yziii应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
大模型应助zhang采纳,获得10
4秒前
5秒前
5秒前
羞涩的萃发布了新的文献求助20
7秒前
yxy完成签到,获得积分20
7秒前
Orange应助lll采纳,获得10
8秒前
韭菜盒子完成签到,获得积分20
8秒前
刺槐完成签到 ,获得积分10
10秒前
10秒前
科研小白完成签到,获得积分10
11秒前
南山北木完成签到,获得积分10
11秒前
12秒前
12秒前
iNk应助DYN采纳,获得20
12秒前
TTT发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023