A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life

计算机科学 人工智能 软件部署 深度学习 电池(电) 电池容量 机器学习 集成学习 试验装置 一般化 领域知识 功率(物理) 操作系统 物理 数学分析 量子力学 数学
作者
Qing Xu,Min Wu,Edwin Khoo,Zhenghua Chen,Xiaoli Li
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 177-187 被引量:65
标识
DOI:10.1109/jas.2023.123024
摘要

Accurate estimation of the remaining useful life (RUL) of lithium-ion batteries is critical for their large-scale deployment as energy storage devices in electric vehicles and stationary storage. A fundamental understanding of the factors affecting RUL is crucial for accelerating battery technology development. However, it is very challenging to predict RUL accurately because of complex degradation mechanisms occurring within the batteries, as well as dynamic operating conditions in practical applications. Moreover, due to insignificant capacity degradation in early stages, early prediction of battery life with early cycle data can be more difficult. In this paper, we propose a hybrid deep learning model for early prediction of battery RUL. The proposed method can effectively combine handcrafted features with domain knowledge and latent features learned by deep networks to boost the performance of RUL early prediction. We also design a non-linear correlation-based method to select effective domain knowledge-based features. Moreover, a novel snapshot ensemble learning strategy is proposed to further enhance model generalization ability without increasing any additional training cost. Our experimental results show that the proposed method not only outperforms other approaches in the primary test set having a similar distribution as the training set, but also generalizes well to the secondary test set having a clearly different distribution with the training set. The PyTorch implementation of our proposed approach is available at https://github.com/batteryrullbattery_rul_early_prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
白兔奶糖发布了新的文献求助10
1秒前
感动友桃应助daisy采纳,获得10
2秒前
Nxx发布了新的文献求助10
2秒前
冷艳小刺猬完成签到 ,获得积分10
2秒前
llay发布了新的文献求助10
3秒前
bingqing发布了新的文献求助30
3秒前
3秒前
LM发布了新的文献求助10
3秒前
3秒前
4秒前
干涸的脑瓜完成签到 ,获得积分10
4秒前
杨德帅发布了新的文献求助10
5秒前
6秒前
retosure发布了新的文献求助10
6秒前
6秒前
Wang_ZiMo发布了新的文献求助10
7秒前
周小熊完成签到 ,获得积分10
7秒前
Yongander发布了新的文献求助10
7秒前
linlinjx完成签到,获得积分10
7秒前
jimskylxk完成签到,获得积分10
8秒前
杨德帅发布了新的文献求助10
10秒前
Yeiiiiii完成签到 ,获得积分10
10秒前
牛爷爷完成签到,获得积分10
10秒前
10秒前
11秒前
Lucas应助酷炫的毛巾采纳,获得50
11秒前
11秒前
aaron发布了新的文献求助10
12秒前
机灵铭发布了新的文献求助10
13秒前
漂亮的麦片完成签到 ,获得积分10
13秒前
科研通AI6应助优秀采纳,获得10
13秒前
安静的缘分完成签到,获得积分10
14秒前
Nxx完成签到,获得积分10
15秒前
ulung完成签到 ,获得积分10
15秒前
daisy完成签到,获得积分10
16秒前
16秒前
一二三四完成签到,获得积分10
17秒前
公瑾完成签到 ,获得积分10
18秒前
晨曦完成签到,获得积分10
19秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345