Transfer performance of gated recurrent unit model for runoff prediction based on the comprehensive spatiotemporal similarity of catchments

地表径流 相似性(几何) 计算机科学 数据挖掘 环境科学 大洪水 水文学(农业) 人工智能 地理 工程类 生态学 图像(数学) 生物 考古 岩土工程
作者
Xiangqiang Min,Bing Hao,Yehua Sheng,Yi Huang,Jiarui Qin
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:330: 117182-117182 被引量:14
标识
DOI:10.1016/j.jenvman.2022.117182
摘要

Accurate runoff prediction in data-poor catchments is important for water resource management, flood mitigation, environmental protection, and other tasks. One possible solution is to transfer a runoff prediction model constructed by using a machine learning model for gauged catchments to data-poor catchments. However, the transfer of runoff prediction model must consider the comprehensive spatiotemporal similarities between the catchments; otherwise, the transfer performance can be massively uncertain. Therefore, to improve the accuracy of runoff prediction and eliminate the uncertainty in identifying the differences between catchment environments, this paper proposes a novel measurement approach of comprehensive spatiotemporal similarity. This approach measures the similarities among catchments by fully considering which of the various catchments' spatiotemporal attributes can better represent the geographical similarity. Then, according to the similarities between the catchments, a runoff prediction model trained in gauged catchments is transformed for the most similar data-poor catchments to predict the runoff and the transfer performance is analyzed. To this end, a runoff prediction model is built using a gated recurrent unit (GRU) network based on the CAMELS catchments data set. A framework to extract the comprehensive spatiotemporal features of catchments is designed using three autoencoders. The catchments' similarities can be measured, further, and their spatiotemporal attributes determined once a measurement model of comprehensive spatiotemporal similarity is constructed. Finally, the transfer performance of the GRU runoff prediction model based on comprehensive spatiotemporal and other geographical similarities is evaluated and analyzed. The experimental results demonstrate that the proposed method outperforms comparable approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Caism采纳,获得10
2秒前
种太阳发布了新的文献求助10
2秒前
3秒前
Yatsennnn发布了新的文献求助10
3秒前
磕盐顺利发布了新的文献求助10
6秒前
lin完成签到,获得积分20
6秒前
irvinzp完成签到,获得积分10
8秒前
8秒前
9秒前
在水一方应助mavissss采纳,获得10
10秒前
FashionBoy应助mavissss采纳,获得10
10秒前
舒心的泥猴桃完成签到,获得积分10
10秒前
菜鸟队长发布了新的文献求助10
12秒前
April发布了新的文献求助10
12秒前
脑洞疼应助水形物语采纳,获得10
13秒前
14秒前
可爱的小丸子完成签到,获得积分10
15秒前
17秒前
袁钰琳发布了新的文献求助10
20秒前
bkagyin应助自信的发夹采纳,获得10
22秒前
哟嚛完成签到,获得积分10
23秒前
hajy完成签到 ,获得积分10
24秒前
24秒前
zcx发布了新的文献求助10
27秒前
瘦瘦摇伽完成签到,获得积分10
28秒前
mavissss发布了新的文献求助10
28秒前
Yatsennnn完成签到,获得积分10
30秒前
Owen应助科研通管家采纳,获得10
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
烟花应助科研通管家采纳,获得10
32秒前
萧水白应助科研通管家采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
32秒前
34秒前
ovo233发布了新的文献求助10
34秒前
顾矜应助huanger采纳,获得10
36秒前
38秒前
39秒前
mavissss发布了新的文献求助10
39秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396729
求助须知:如何正确求助?哪些是违规求助? 3006319
关于积分的说明 8820394
捐赠科研通 2693370
什么是DOI,文献DOI怎么找? 1475314
科研通“疑难数据库(出版商)”最低求助积分说明 682394
邀请新用户注册赠送积分活动 675680