亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Distributed Evolutionary Framework for Large-scale SNP-SNP Interaction Detection

SNP公司 计算机科学 比例(比率) 计算生物学 生物 遗传学 单核苷酸多态性 物理 基因型 量子力学 基因
作者
Fangting Li,Yuhai Zhao,Boxin Guan,Yuan Li
标识
DOI:10.1109/bibm55620.2022.9995483
摘要

Capturing the complex interactions of single nucleotide polymorphisms (SNPs) is considered essential for etiological analysis in genome-wide association analysis (GWAS). Evolutionary algorithms (EAs) have been extensively adopted for SNP-SNP interaction detection. Most existing EA-based methods focus on enhancing the search ability of EA itself. However, as the scale of SNP data further increases, the exponentially growing search space gradually becomes the dominant factor leading to the performance degradation of EA-based methods. To this end, a distributed evolutionary framework based on space partitioning (SP-EF) is proposed to detect SNP-SNP interactions on large-scale datasets. Distinct from the traditional population-distributed approaches, SP-EF first partitions the entire search space into several subspaces from the perspective of data. The space partitioning strategy is non-destructive since it guarantees that each feasible solution is assigned to a specific subspace. Thereafter, each subspace is explored by an EA optimizer independently and all the subspaces are optimized in parallel. Lastly, the final output is selected from the local optima in the historical search of each subspace. SP-EF can not only cope with the heavy computational burden of SNP combination evaluation but also enhance the diversity of the population to avoid local optima. Notably, SP-EF is load-balanced and scalable since it can flexibly partition the space according to the number of available computational nodes and the problem size. To show the practicability of SP-EF, we further design a discrete fireworks algorithm (DFWA) with three problem-guided operators as an EA optimizer. Experiments on artificial and real-world datasets demonstrate that our method significantly improves search speed and search accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到,获得积分10
1秒前
zqq完成签到,获得积分0
4秒前
17秒前
leafye发布了新的文献求助10
22秒前
27秒前
热带蚂蚁完成签到 ,获得积分10
34秒前
劲秉应助微笑小伙采纳,获得20
38秒前
FashionBoy应助dongdong采纳,获得10
39秒前
脑洞疼应助luna采纳,获得10
43秒前
51秒前
luna发布了新的文献求助10
55秒前
1分钟前
NexusExplorer应助luna采纳,获得10
1分钟前
1分钟前
dongdong发布了新的文献求助10
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
iorpi发布了新的文献求助10
1分钟前
1分钟前
斐波那契的兔子完成签到,获得积分10
1分钟前
luna发布了新的文献求助10
1分钟前
思源应助平常的白筠采纳,获得10
1分钟前
啊啊啊完成签到 ,获得积分10
1分钟前
无花果应助luna采纳,获得10
1分钟前
xxxxxxh发布了新的文献求助20
1分钟前
所所应助畅快的涵蕾采纳,获得10
2分钟前
2分钟前
xxxxxxh完成签到,获得积分10
2分钟前
2分钟前
luna发布了新的文献求助10
2分钟前
大气的玉米完成签到,获得积分10
2分钟前
dongdong完成签到,获得积分20
2分钟前
bkagyin应助luna采纳,获得10
2分钟前
2分钟前
luna发布了新的文献求助10
2分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
我是老大应助科研通管家采纳,获得10
3分钟前
zxy应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466798
求助须知:如何正确求助?哪些是违规求助? 3059583
关于积分的说明 9067131
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896