SE-COTR: A Novel Fruit Segmentation Model for Green Apples Application in Complex Orchard

分割 人工智能 计算机科学 果园 增采样 计算机视觉 尺度空间分割 图像分割 模式识别(心理学) 园艺 图像(数学) 生物
作者
Zhifen Wang,Zhonghua Zhang,Yuqi Lu,Rong Luo,Yi Niu,Xinbo Yang,Shaoxue Jing,Chengzhi Ruan,Yuanjie Zheng,Weikuan Jia
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:2022 被引量:13
标识
DOI:10.34133/plantphenomics.0005
摘要

Because of the unstructured characteristics of natural orchards, the efficient detection and segmentation applications of green fruits remain an essential challenge for intelligent agriculture. Therefore, an innovative fruit segmentation method based on deep learning, termed SE-COTR (segmentation based on coordinate transformer), is proposed to achieve accurate and real-time segmentation of green apples. The lightweight network MobileNetV2 is used as the backbone, combined with the constructed coordinate attention-based coordinate transformer module to enhance the focus on effective features. In addition, joint pyramid upsampling module is optimized for integrating multiscale features, making the model suitable for the detection and segmentation of target fruits with different sizes. Finally, in combination with the outputs of the function heads, the dynamic convolution operation is applied to predict the instance mask. In complex orchard environment with variable conditions, SE-COTR achieves a mean average precision of 61.6% with low complexity for green apple fruit segmentation at severe occlusion and different fruit scales. Especially, the segmentation accuracy for small target fruits reaches 43.3%, which is obviously better than other advanced segmentation models and realizes good recognition results. The proposed method effectively solves the problem of low accuracy and overly complex fruit segmentation models with the same color as the background and can be built in portable mobile devices to undertake accurate and efficient agricultural works in complex orchard.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无奈翠风完成签到,获得积分20
1秒前
卡卡西应助木木采纳,获得20
1秒前
紫紫完成签到,获得积分10
1秒前
rengar完成签到,获得积分10
2秒前
共享精神应助XING采纳,获得10
2秒前
拓跋慕灵完成签到,获得积分10
2秒前
阳光飞风关注了科研通微信公众号
2秒前
ztttttt发布了新的文献求助10
3秒前
纯真的笑珊完成签到,获得积分10
4秒前
4秒前
4秒前
黄晓荷完成签到,获得积分10
4秒前
vali完成签到,获得积分10
4秒前
星空发布了新的文献求助10
5秒前
5秒前
5秒前
Lucas应助聪明的勒采纳,获得10
6秒前
无为完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
杨冰完成签到,获得积分10
9秒前
我是老大应助One采纳,获得10
9秒前
我是老大应助11111采纳,获得10
10秒前
发财小鱼完成签到 ,获得积分10
10秒前
Sunkeke发布了新的文献求助10
10秒前
沙耶酱完成签到,获得积分10
11秒前
LMX发布了新的文献求助10
11秒前
散装洋芋发布了新的文献求助10
11秒前
热心擎宇发布了新的文献求助10
11秒前
虫二完成签到,获得积分10
11秒前
张老师发布了新的文献求助10
12秒前
wsh完成签到 ,获得积分10
12秒前
一颗大树完成签到,获得积分10
12秒前
12秒前
Yuchaoo发布了新的文献求助30
12秒前
WYY完成签到,获得积分10
13秒前
cc发布了新的文献求助10
14秒前
GXS发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954728
求助须知:如何正确求助?哪些是违规求助? 3500844
关于积分的说明 11101288
捐赠科研通 3231320
什么是DOI,文献DOI怎么找? 1786401
邀请新用户注册赠送积分活动 870028
科研通“疑难数据库(出版商)”最低求助积分说明 801771