亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SE-COTR: A Novel Fruit Segmentation Model for Green Apples Application in Complex Orchard

分割 人工智能 计算机科学 果园 增采样 计算机视觉 尺度空间分割 图像分割 模式识别(心理学) 园艺 图像(数学) 生物
作者
Zhifen Wang,Zhonghua Zhang,Yuqi Lu,Rong Luo,Yi Niu,Xinbo Yang,Shaoxue Jing,Chengzhi Ruan,Yuanjie Zheng,Weikuan Jia
出处
期刊:Plant phenomics [AAAS00]
卷期号:2022 被引量:13
标识
DOI:10.34133/plantphenomics.0005
摘要

Because of the unstructured characteristics of natural orchards, the efficient detection and segmentation applications of green fruits remain an essential challenge for intelligent agriculture. Therefore, an innovative fruit segmentation method based on deep learning, termed SE-COTR (segmentation based on coordinate transformer), is proposed to achieve accurate and real-time segmentation of green apples. The lightweight network MobileNetV2 is used as the backbone, combined with the constructed coordinate attention-based coordinate transformer module to enhance the focus on effective features. In addition, joint pyramid upsampling module is optimized for integrating multiscale features, making the model suitable for the detection and segmentation of target fruits with different sizes. Finally, in combination with the outputs of the function heads, the dynamic convolution operation is applied to predict the instance mask. In complex orchard environment with variable conditions, SE-COTR achieves a mean average precision of 61.6% with low complexity for green apple fruit segmentation at severe occlusion and different fruit scales. Especially, the segmentation accuracy for small target fruits reaches 43.3%, which is obviously better than other advanced segmentation models and realizes good recognition results. The proposed method effectively solves the problem of low accuracy and overly complex fruit segmentation models with the same color as the background and can be built in portable mobile devices to undertake accurate and efficient agricultural works in complex orchard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彭于晏应助读书的时候采纳,获得80
14秒前
落沧完成签到 ,获得积分10
14秒前
充电宝应助西瓜霜采纳,获得10
17秒前
20秒前
20秒前
Jasper应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得30
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
传奇3应助读书的时候采纳,获得10
44秒前
JodieZhu完成签到,获得积分10
47秒前
嘻嘻哈哈发布了新的文献求助10
1分钟前
1分钟前
wz完成签到,获得积分10
1分钟前
JamesPei应助manjusaka采纳,获得10
1分钟前
bkagyin应助读书的时候采纳,获得10
1分钟前
1分钟前
manjusaka发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
嘻嘻哈哈发布了新的文献求助10
2分钟前
3分钟前
3分钟前
大模型应助读书的时候采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
刻苦的艳发布了新的文献求助10
4分钟前
酷波er应助刻苦的艳采纳,获得30
4分钟前
5分钟前
5分钟前
果酱完成签到,获得积分10
5分钟前
5分钟前
娟子完成签到,获得积分10
5分钟前
wanci应助读书的时候采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732400
求助须知:如何正确求助?哪些是违规求助? 5338949
关于积分的说明 15322212
捐赠科研通 4877990
什么是DOI,文献DOI怎么找? 2620796
邀请新用户注册赠送积分活动 1570000
关于科研通互助平台的介绍 1526672