Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization, and prospects

催化作用 Pourbaix图 制氢 析氧 电解水 电解 分解水 氧化物 电催化剂 材料科学 电解质 化学工程 冶金 化学 纳米技术 工程类 物理化学 有机化学 光催化 电化学 电极
作者
Mengwei Guo,Rongrong Deng,Chaowu Wang,Qibo Zhang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:78: 537-553 被引量:52
标识
DOI:10.1016/j.jechem.2022.11.054
摘要

The oxygen evolution reaction (OER) is the basis of various sustainable energy conversion and storage techniques, especially hydrogen production by water electrolysis. To realize the practical application of hydrogen energy and mass-scale hydrogen production via water electrolysis, several obstacles, such as the multi-electron transfer OER process with sluggish kinetics and overall high reaction barrier, should be overcome. Manganese oxide-based (MnOx) materials, especially MnO2, have emerged as promising non-noble electrocatalysts for water electro-oxidation under acidic conditions due to their well-balanced properties between catalytic activity and stability. This review introduces the fundamental understanding of the catalytic OER process on MnOx-based materials, including the conventional adsorbate evolution mechanism (AEM) and emerging lattice oxygen oxidation mechanism (LOM). The rational screening and prediction of MnOx-based catalysts that can stably catalyze OER in acid are summarized based on Pourbaix diagram analysis and thermodynamic density functional theory (DFT) calculations. Then, the up-to-date progress of upgrading the OER catalytic performance of MnOx-based catalysts by composite construction is reviewed. Afterward, feasible strategies to improve the electrocatalytic activity and lifetime of MnOx-based catalysts are systemically discussed in terms of crystal structure control, reasonable setting of working potential and electrolyte environment, optimal selection of acid-stable conductive supports, and self-healing engineering. Finally, future scientific challenges and research directions are outlined to guide the construction of advanced MnOx-based electrocatalysts for OER in acid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助mengmeng采纳,获得30
刚刚
1秒前
Jiang发布了新的文献求助10
1秒前
姜淮发布了新的文献求助10
2秒前
Daidai发布了新的文献求助10
2秒前
3秒前
呆萌小虾米完成签到,获得积分10
3秒前
飞飞飞123发布了新的文献求助10
4秒前
科研通AI5应助sykzx采纳,获得10
4秒前
Harlotte发布了新的文献求助10
5秒前
kkk556发布了新的文献求助10
5秒前
Lee发布了新的文献求助10
5秒前
认真的冰淇淋完成签到,获得积分20
6秒前
热心的秋尽完成签到,获得积分10
6秒前
6秒前
8888完成签到,获得积分20
6秒前
7秒前
NexusExplorer应助潇洒莞采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
科研通AI2S应助SophiaMX采纳,获得10
7秒前
LYC完成签到,获得积分20
7秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
苹果可燕应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
Niniiii应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
9秒前
哭泣灯泡发布了新的文献求助10
9秒前
寒冷一手发布了新的文献求助10
10秒前
斯文败类应助张可采纳,获得10
10秒前
研友_LNoy5n发布了新的文献求助10
13秒前
大花发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421