Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization, and prospects

催化作用 Pourbaix图 制氢 析氧 电解水 电解 分解水 氧化物 电催化剂 材料科学 电解质 化学工程 冶金 化学 纳米技术 工程类 物理化学 有机化学 光催化 电化学 电极
作者
Mengwei Guo,Rongrong Deng,Chaowu Wang,Qibo Zhang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:78: 537-553 被引量:54
标识
DOI:10.1016/j.jechem.2022.11.054
摘要

The oxygen evolution reaction (OER) is the basis of various sustainable energy conversion and storage techniques, especially hydrogen production by water electrolysis. To realize the practical application of hydrogen energy and mass-scale hydrogen production via water electrolysis, several obstacles, such as the multi-electron transfer OER process with sluggish kinetics and overall high reaction barrier, should be overcome. Manganese oxide-based (MnOx) materials, especially MnO2, have emerged as promising non-noble electrocatalysts for water electro-oxidation under acidic conditions due to their well-balanced properties between catalytic activity and stability. This review introduces the fundamental understanding of the catalytic OER process on MnOx-based materials, including the conventional adsorbate evolution mechanism (AEM) and emerging lattice oxygen oxidation mechanism (LOM). The rational screening and prediction of MnOx-based catalysts that can stably catalyze OER in acid are summarized based on Pourbaix diagram analysis and thermodynamic density functional theory (DFT) calculations. Then, the up-to-date progress of upgrading the OER catalytic performance of MnOx-based catalysts by composite construction is reviewed. Afterward, feasible strategies to improve the electrocatalytic activity and lifetime of MnOx-based catalysts are systemically discussed in terms of crystal structure control, reasonable setting of working potential and electrolyte environment, optimal selection of acid-stable conductive supports, and self-healing engineering. Finally, future scientific challenges and research directions are outlined to guide the construction of advanced MnOx-based electrocatalysts for OER in acid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bpl完成签到,获得积分10
刚刚
刚刚
ltxinanjiao发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
zhzzhz完成签到,获得积分10
3秒前
ddizi发布了新的文献求助30
3秒前
xjl发布了新的文献求助10
4秒前
5秒前
5秒前
sadh2完成签到 ,获得积分10
5秒前
5秒前
xuanwu发布了新的文献求助10
7秒前
7秒前
无花果应助摆哥采纳,获得10
7秒前
馒头酶完成签到,获得积分10
8秒前
xue完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
zhaomr完成签到,获得积分10
10秒前
10秒前
watercolding发布了新的文献求助10
10秒前
zsp发布了新的文献求助10
11秒前
金志铭驳回了852应助
11秒前
不倦应助xuanwu采纳,获得10
13秒前
无花果应助xjl采纳,获得10
14秒前
orchid发布了新的文献求助10
14秒前
孝顺的白薇完成签到,获得积分20
14秒前
lily完成签到,获得积分20
15秒前
蓝溺应助ltxinanjiao采纳,获得30
16秒前
大模型应助watercolding采纳,获得10
16秒前
溏心蛋完成签到,获得积分10
16秒前
17秒前
开心的火龙果完成签到,获得积分10
18秒前
18秒前
Sandy完成签到 ,获得积分10
19秒前
彭于晏应助肖遥采纳,获得10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544