Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization, and prospects

催化作用 Pourbaix图 制氢 析氧 电解水 电解 分解水 氧化物 电催化剂 材料科学 电解质 化学工程 冶金 化学 纳米技术 工程类 物理化学 有机化学 光催化 电化学 电极
作者
Mengwei Guo,Rongrong Deng,Chaowu Wang,Qibo Zhang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 537-553 被引量:31
标识
DOI:10.1016/j.jechem.2022.11.054
摘要

The oxygen evolution reaction (OER) is the basis of various sustainable energy conversion and storage techniques, especially hydrogen production by water electrolysis. To realize the practical application of hydrogen energy and mass-scale hydrogen production via water electrolysis, several obstacles, such as the multi-electron transfer OER process with sluggish kinetics and overall high reaction barrier, should be overcome. Manganese oxide-based (MnOx) materials, especially MnO2, have emerged as promising non-noble electrocatalysts for water electro-oxidation under acidic conditions due to their well-balanced properties between catalytic activity and stability. This review introduces the fundamental understanding of the catalytic OER process on MnOx-based materials, including the conventional adsorbate evolution mechanism (AEM) and emerging lattice oxygen oxidation mechanism (LOM). The rational screening and prediction of MnOx-based catalysts that can stably catalyze OER in acid are summarized based on Pourbaix diagram analysis and thermodynamic density functional theory (DFT) calculations. Then, the up-to-date progress of upgrading the OER catalytic performance of MnOx-based catalysts by composite construction is reviewed. Afterward, feasible strategies to improve the electrocatalytic activity and lifetime of MnOx-based catalysts are systemically discussed in terms of crystal structure control, reasonable setting of working potential and electrolyte environment, optimal selection of acid-stable conductive supports, and self-healing engineering. Finally, future scientific challenges and research directions are outlined to guide the construction of advanced MnOx-based electrocatalysts for OER in acid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
标致雨寒完成签到,获得积分20
2秒前
树池完成签到,获得积分10
4秒前
树池发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
11秒前
睡觉做大梦完成签到 ,获得积分10
13秒前
zhoujiahui发布了新的文献求助10
15秒前
15秒前
15秒前
自觉士萧发布了新的文献求助10
16秒前
希瓜西米露完成签到,获得积分10
17秒前
一二发布了新的文献求助10
17秒前
不配.应助奋斗的从凝采纳,获得20
18秒前
18秒前
gaobowang完成签到,获得积分10
18秒前
陈小青完成签到 ,获得积分10
20秒前
22秒前
Ava应助小小斌采纳,获得10
23秒前
24秒前
24秒前
27秒前
Venus发布了新的文献求助10
28秒前
28秒前
小李发布了新的文献求助10
29秒前
Midsummer完成签到,获得积分10
29秒前
29秒前
liux98完成签到,获得积分10
30秒前
共享精神应助一二采纳,获得10
30秒前
白映完成签到,获得积分10
30秒前
饼子完成签到 ,获得积分10
31秒前
32秒前
32秒前
33秒前
33秒前
艺术家脾气完成签到,获得积分10
34秒前
wenxian发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134988
求助须知:如何正确求助?哪些是违规求助? 2785963
关于积分的说明 7774538
捐赠科研通 2441779
什么是DOI,文献DOI怎么找? 1298177
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825