Modeling Irradiation-Induced Degradation for 4H-SiC Power MOSFETs

符号 数学 算法 离散数学 算术
作者
Shiwei Liang,Yu Yang,Lei Shu,Ziyuan Wu,Bingru Chen,Hengyu Yu,Hangzhi Liu,Liang Wang,Tongde Li,Gaoqiang Deng,Jun Wang
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:70 (3): 1176-1180 被引量:13
标识
DOI:10.1109/ted.2023.3234039
摘要

In this article, we proposed a comprehensive model for predicting the degradation of SiC MOSFETs after gamma-ray irradiation. It is experimentally founded that SiC MOSFETs exhibit different degradation behaviors under gate bias (i.e., ${V}_{\text {GS}} =15$ V and ${V}_{\text {DS}} $ = 0 V) and drain bias (i.e., ${V}_{\text {GS}} $ = 0 V and ${V}_{\text {DS}} =400$ V) in terms of threshold voltage ( ${V}_{\text {TH}}$ ) and ON-resistance ( ${R}_{\text {ds}, \text{ON}}$ ). TCAD simulation shows that gate bias causes a high electric field in gate oxide above the MOS channel region, while drain bias generates relatively lower electric field in gate oxide around near-channel region. The differences in electric field under gate bias and drain bias lead to different hole yields and charge accumulation in gate oxide, which is the underlying physical mechanism for their different degradation behaviors. ${V}_{\text {TH}}$ is chosen as the parameter to quantify the accumulated charges in gate oxide and further predict irradiation-induced degradation. The relationship between the variation of threshold voltage ( ${\Delta} {V}_{\text {TH}}$ ) and the total ionizing doses (TIDs) under both gate and drain bias is formulated and validated. Comparison among measured data, TCAD simulation, and model prediction shows that the maximum prediction error is lower than 0.08 V, which proves the rationale and accuracy of the proposed degradation model. In addition, the two submodels for gate bias and drain bias are unified as one according to the time dependence effect (TDE) for TID irradiation. The proposed model could be useful to predict the degradation and/or lifetime of SiC MOSFETs in irradiation environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆梦山完成签到,获得积分10
刚刚
姜明哲完成签到 ,获得积分10
刚刚
make217完成签到 ,获得积分10
1秒前
清风完成签到 ,获得积分10
3秒前
4秒前
所所应助serendipity采纳,获得10
4秒前
5秒前
6秒前
childe完成签到,获得积分10
7秒前
Glileo完成签到 ,获得积分10
7秒前
7秒前
完美世界应助黄健丰采纳,获得10
8秒前
8秒前
Lucas应助shen采纳,获得10
9秒前
洁净百川完成签到 ,获得积分10
10秒前
科研小秦发布了新的文献求助10
10秒前
12秒前
childe发布了新的文献求助10
12秒前
xieyangyu发布了新的文献求助10
13秒前
蓝天发布了新的文献求助10
13秒前
14秒前
L1完成签到,获得积分10
14秒前
14秒前
朝闻道完成签到 ,获得积分10
15秒前
16秒前
蒋建国完成签到,获得积分10
17秒前
hui发布了新的文献求助10
19秒前
wodke完成签到,获得积分10
19秒前
当时的发布了新的文献求助10
19秒前
hh完成签到 ,获得积分10
20秒前
小黄瓜896发布了新的文献求助10
21秒前
21秒前
山梦完成签到 ,获得积分10
22秒前
英姑应助美好斓采纳,获得10
22秒前
25秒前
Ruan_zzz完成签到 ,获得积分10
25秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
yangching完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603615
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14855047
捐赠科研通 4694226
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806