Modeling Irradiation-Induced Degradation for 4H-SiC Power MOSFETs

符号 数学 算法 离散数学 算术
作者
Shiwei Liang,Yu Yang,Lei Shu,Ziyuan Wu,Bingru Chen,Hengyu Yu,Hangzhi Liu,Liang Wang,Tongde Li,Gaoqiang Deng,Jun Wang
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:70 (3): 1176-1180 被引量:13
标识
DOI:10.1109/ted.2023.3234039
摘要

In this article, we proposed a comprehensive model for predicting the degradation of SiC MOSFETs after gamma-ray irradiation. It is experimentally founded that SiC MOSFETs exhibit different degradation behaviors under gate bias (i.e., ${V}_{\text {GS}} =15$ V and ${V}_{\text {DS}} $ = 0 V) and drain bias (i.e., ${V}_{\text {GS}} $ = 0 V and ${V}_{\text {DS}} =400$ V) in terms of threshold voltage ( ${V}_{\text {TH}}$ ) and ON-resistance ( ${R}_{\text {ds}, \text{ON}}$ ). TCAD simulation shows that gate bias causes a high electric field in gate oxide above the MOS channel region, while drain bias generates relatively lower electric field in gate oxide around near-channel region. The differences in electric field under gate bias and drain bias lead to different hole yields and charge accumulation in gate oxide, which is the underlying physical mechanism for their different degradation behaviors. ${V}_{\text {TH}}$ is chosen as the parameter to quantify the accumulated charges in gate oxide and further predict irradiation-induced degradation. The relationship between the variation of threshold voltage ( ${\Delta} {V}_{\text {TH}}$ ) and the total ionizing doses (TIDs) under both gate and drain bias is formulated and validated. Comparison among measured data, TCAD simulation, and model prediction shows that the maximum prediction error is lower than 0.08 V, which proves the rationale and accuracy of the proposed degradation model. In addition, the two submodels for gate bias and drain bias are unified as one according to the time dependence effect (TDE) for TID irradiation. The proposed model could be useful to predict the degradation and/or lifetime of SiC MOSFETs in irradiation environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyuwqhjp发布了新的文献求助10
刚刚
JY完成签到,获得积分10
1秒前
2秒前
忐忑的雪晴完成签到 ,获得积分10
2秒前
海盗船长发布了新的文献求助10
3秒前
星海殇完成签到 ,获得积分0
4秒前
5秒前
完美世界应助青苔采纳,获得10
8秒前
科研通AI5应助初夏采纳,获得10
9秒前
健康幸福平安完成签到,获得积分10
10秒前
10秒前
无物完成签到,获得积分10
13秒前
我和狂三贴贴完成签到,获得积分10
13秒前
科研通AI5应助猪猪hero采纳,获得10
14秒前
包容的剑完成签到 ,获得积分10
15秒前
迫切完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
19秒前
departure发布了新的文献求助10
20秒前
大力的飞莲完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
ELLA发布了新的文献求助30
22秒前
wsy完成签到 ,获得积分10
22秒前
sunaijia完成签到,获得积分0
23秒前
23秒前
23秒前
今天也晴朗关注了科研通微信公众号
23秒前
24秒前
猪猪hero发布了新的文献求助10
24秒前
25秒前
科研通AI5应助XIjwuse采纳,获得10
26秒前
兰金发布了新的文献求助10
27秒前
胡平发布了新的文献求助10
28秒前
29秒前
Avatar完成签到,获得积分10
32秒前
wyuwqhjp完成签到,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3678223
求助须知:如何正确求助?哪些是违规求助? 3231754
关于积分的说明 9799385
捐赠科研通 2942918
什么是DOI,文献DOI怎么找? 1613568
邀请新用户注册赠送积分活动 761655
科研通“疑难数据库(出版商)”最低求助积分说明 737048