Modeling Irradiation-Induced Degradation for 4H-SiC Power MOSFETs

符号 数学 算法 离散数学 算术
作者
Shiwei Liang,Yang Yu,Lei Shu,Ziyuan Wu,Bingru Chen,Hengyu Yu,Hangzhi Liu,Liang Wang,Tongde Li,Gaoqiang Deng,Jun Wang
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:70 (3): 1176-1180 被引量:11
标识
DOI:10.1109/ted.2023.3234039
摘要

In this article, we proposed a comprehensive model for predicting the degradation of SiC MOSFETs after gamma-ray irradiation. It is experimentally founded that SiC MOSFETs exhibit different degradation behaviors under gate bias (i.e., ${V}_{\text {GS}} =15$ V and ${V}_{\text {DS}} $ = 0 V) and drain bias (i.e., ${V}_{\text {GS}} $ = 0 V and ${V}_{\text {DS}} =400$ V) in terms of threshold voltage ( ${V}_{\text {TH}}$ ) and ON-resistance ( ${R}_{\text {ds}, \text{ON}}$ ). TCAD simulation shows that gate bias causes a high electric field in gate oxide above the MOS channel region, while drain bias generates relatively lower electric field in gate oxide around near-channel region. The differences in electric field under gate bias and drain bias lead to different hole yields and charge accumulation in gate oxide, which is the underlying physical mechanism for their different degradation behaviors. ${V}_{\text {TH}}$ is chosen as the parameter to quantify the accumulated charges in gate oxide and further predict irradiation-induced degradation. The relationship between the variation of threshold voltage ( ${\Delta} {V}_{\text {TH}}$ ) and the total ionizing doses (TIDs) under both gate and drain bias is formulated and validated. Comparison among measured data, TCAD simulation, and model prediction shows that the maximum prediction error is lower than 0.08 V, which proves the rationale and accuracy of the proposed degradation model. In addition, the two submodels for gate bias and drain bias are unified as one according to the time dependence effect (TDE) for TID irradiation. The proposed model could be useful to predict the degradation and/or lifetime of SiC MOSFETs in irradiation environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆瓜发布了新的文献求助150
刚刚
彭于晏应助msj采纳,获得30
刚刚
1秒前
mouxq发布了新的文献求助10
1秒前
1秒前
彭于晏应助留胡子的函采纳,获得10
1秒前
支翰完成签到 ,获得积分10
2秒前
一一发布了新的文献求助10
2秒前
3秒前
bitahu发布了新的文献求助10
3秒前
orixero应助小小采纳,获得10
3秒前
4秒前
4秒前
研友_VZG7GZ应助姜建正采纳,获得10
4秒前
鲜于夜白完成签到,获得积分10
6秒前
8秒前
酷波er应助无奈冬寒采纳,获得10
8秒前
8秒前
9秒前
鲜于夜白发布了新的文献求助10
9秒前
斯文败类应助孤独的迎滑采纳,获得10
9秒前
9秒前
可爱的函函应助wxpz采纳,获得10
10秒前
胡英宇发布了新的文献求助10
10秒前
11秒前
11秒前
花花完成签到,获得积分10
12秒前
kk123发布了新的文献求助10
12秒前
大模型应助GXJ采纳,获得20
13秒前
yhchow0204应助小朋友采纳,获得10
13秒前
yhchow0204应助小朋友采纳,获得10
13秒前
light完成签到,获得积分20
14秒前
知道发布了新的文献求助10
14秒前
14秒前
15秒前
am发布了新的文献求助30
16秒前
pitto完成签到,获得积分10
16秒前
充电宝应助light采纳,获得10
18秒前
hyy发布了新的文献求助10
18秒前
18秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570