The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest

弦(物理) 基因组 生物 背景(考古学) 计算生物学 补语(音乐) 交互网络 蛋白质-蛋白质相互作用 计算机科学 数据库 遗传学 物理 基因 表型 古生物学 量子力学 互补
作者
Damian Szklarczyk,Rebecca Kirsch,Mikaela Koutrouli,Katerina Nastou,Farrokh Mehryary,Radja Hachilif,Annika L Gable,Tao Fang,Nadezhda T. Doncheva,Sampo Pyysalo,Peer Bork,Lars Juhl Jensen,Christian von Mering
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:51 (D1): D638-D646 被引量:2285
标识
DOI:10.1093/nar/gkac1000
摘要

Much of the complexity within cells arises from functional and regulatory interactions among proteins. The core of these interactions is increasingly known, but novel interactions continue to be discovered, and the information remains scattered across different database resources, experimental modalities and levels of mechanistic detail. The STRING database (https://string-db.org/) systematically collects and integrates protein-protein interactions-both physical interactions as well as functional associations. The data originate from a number of sources: automated text mining of the scientific literature, computational interaction predictions from co-expression, conserved genomic context, databases of interaction experiments and known complexes/pathways from curated sources. All of these interactions are critically assessed, scored, and subsequently automatically transferred to less well-studied organisms using hierarchical orthology information. The data can be accessed via the website, but also programmatically and via bulk downloads. The most recent developments in STRING (version 12.0) are: (i) it is now possible to create, browse and analyze a full interaction network for any novel genome of interest, by submitting its complement of encoded proteins, (ii) the co-expression channel now uses variational auto-encoders to predict interactions, and it covers two new sources, single-cell RNA-seq and experimental proteomics data and (iii) the confidence in each experimentally derived interaction is now estimated based on the detection method used, and communicated to the user in the web-interface. Furthermore, STRING continues to enhance its facilities for functional enrichment analysis, which are now fully available also for user-submitted genomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助kang采纳,获得10
刚刚
勤劳怜寒发布了新的文献求助10
刚刚
1秒前
英俊的铭应助王京采纳,获得10
1秒前
顺心浩阑应助ZJJ静采纳,获得20
1秒前
huijun发布了新的文献求助10
1秒前
科研通AI5应助清脆如之采纳,获得10
1秒前
2秒前
我是老大应助yogurtli采纳,获得10
4秒前
从容幼南完成签到,获得积分10
5秒前
该睡觉啦发布了新的文献求助10
5秒前
5秒前
不吃香菜完成签到 ,获得积分10
5秒前
5秒前
6秒前
在水一方应助研究僧采纳,获得10
7秒前
7秒前
8秒前
肾小球呵呵完成签到,获得积分10
8秒前
科研通AI5应助流北爷采纳,获得10
8秒前
于于发布了新的文献求助10
8秒前
勤奋颜演完成签到,获得积分10
9秒前
9秒前
10秒前
慕青应助xulei采纳,获得10
10秒前
wendy发布了新的文献求助10
10秒前
huijun完成签到,获得积分10
10秒前
advance发布了新的文献求助10
11秒前
YoKo完成签到,获得积分10
11秒前
Easton完成签到,获得积分10
12秒前
樊傲云发布了新的文献求助10
12秒前
郷禦完成签到,获得积分10
12秒前
乐乐应助小张采纳,获得10
12秒前
美少女壮壮完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
李健应助香菜碗里来采纳,获得10
13秒前
shin0324发布了新的文献求助30
13秒前
xiaomaxia完成签到 ,获得积分20
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735079
求助须知:如何正确求助?哪些是违规求助? 3278971
关于积分的说明 10012522
捐赠科研通 2995555
什么是DOI,文献DOI怎么找? 1643499
邀请新用户注册赠送积分活动 781304
科研通“疑难数据库(出版商)”最低求助积分说明 749351