Blockchain-Enabled Task Offloading With Energy Harvesting in Multi-UAV-Assisted IoT Networks: A Multi-Agent DRL Approach

计算机科学 斯塔克伯格竞赛 分布式计算 计算卸载 最优化问题 能源消耗 物联网 边缘计算 计算机安全 算法 生态学 数学 生物 数理经济学
作者
Abegaz Mohammed Seid,Jianfeng Lu,Hayla Nahom Abishu,Tewodros Alemu Ayall
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3517-3532 被引量:21
标识
DOI:10.1109/jsac.2022.3213352
摘要

Unmanned Aerial Vehicle (UAV) is a promising technology that can serve as aerial base stations to assist Internet of Things (IoT) networks, solving various problems such as extending network coverage, enhancing network performance, transferring energy to IoT devices (IoTDs), and perform computationally-intensive tasks of IoTDs. Heterogeneous IoTDs connected to IoT networks have limited processing capability, so they cannot perform resource-intensive activities for extended periods. Additionally, IoT network is vulnerable to security threats and natural calamities, limiting the execution of real-time applications. Although there have been many attempts to solve resource scarcity through computational offloading with Energy Harvesting (EH), the emergency and vulnerability issues have still been under-explored so far. This paper proposes a blockchain and multi-agent deep reinforcement learning (MADRL) integrated framework for computation offloading with EH in a multi-UAV-assisted IoT network, where IoTDs obtain computing and energy resources from UAVs. We first formulate the optimization problem as the joint optimization problem of computation offloading and EH problems while considering the optimal resource price. And then, we model the optimization problem as a Stackelberg game to investigate the interaction between IoTDs and UAVs by allowing them to continuously adjust their resource demands and pricing strategies. In particular, the formulated problem can be addressed indirectly by a stochastic game model to minimize computation costs for IoTDs while maximizing the utility of UAVs. The MADRL algorithm solves the defined problem due to its dynamic and large-dimensional properties. Finally, extensive simulation results demonstrate the superiority of our proposed framework compared to the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿芫发布了新的文献求助10
刚刚
打打应助驼子采纳,获得10
刚刚
Lqiqiqi完成签到,获得积分10
1秒前
1秒前
1秒前
活泼的小伙完成签到,获得积分10
2秒前
4秒前
陆靖易发布了新的文献求助10
4秒前
5秒前
早早入眠完成签到,获得积分10
5秒前
5秒前
九秋霜完成签到,获得积分10
6秒前
7秒前
蔺瑾瑜完成签到,获得积分10
7秒前
话语完成签到,获得积分10
8秒前
隐形摇伽完成签到,获得积分10
8秒前
牛牛牛发布了新的文献求助10
8秒前
岁岁菌完成签到,获得积分10
8秒前
alexisgood完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
WT发布了新的文献求助10
10秒前
怡然嚣完成签到 ,获得积分10
10秒前
chiah发布了新的文献求助10
10秒前
蔺瑾瑜发布了新的文献求助10
11秒前
情怀应助nuo采纳,获得10
11秒前
纯真的夏柳完成签到,获得积分10
11秒前
陆靖易完成签到,获得积分10
11秒前
12秒前
今后应助阿芫采纳,获得10
12秒前
13秒前
知止发布了新的文献求助10
14秒前
人造草莓完成签到,获得积分10
14秒前
14秒前
15秒前
搜集达人应助星野采纳,获得10
15秒前
田様应助6yy采纳,获得10
15秒前
田様应助凤梨爱好者采纳,获得10
15秒前
慕青应助薰衣草采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 3000
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726798
求助须知:如何正确求助?哪些是违规求助? 3271808
关于积分的说明 9973811
捐赠科研通 2987155
什么是DOI,文献DOI怎么找? 1638750
邀请新用户注册赠送积分活动 778259
科研通“疑难数据库(出版商)”最低求助积分说明 747549