A multimodal deep neural network for prediction of the driver’s focus of attention based on anthropomorphic attention mechanism and prior knowledge

计算机科学 人工智能 卷积神经网络 光学(聚焦) 注意力网络 背景(考古学) 深度学习 RGB颜色模型 分散注意力 人工神经网络 机器学习 计算机视觉 古生物学 物理 神经科学 光学 生物
作者
Rui Fu,Tao Huang,Mingyue Li,Qinyu Sun,Yunxing Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:214: 119157-119157 被引量:9
标识
DOI:10.1016/j.eswa.2022.119157
摘要

The prediction of the driver’s focus of attention (DFoA) is becoming essential research for the driver distraction detection and intelligent vehicle. Therefore, this work makes an attempt to predict DFoA. However, traffic driving environment is a complex and dynamic changing scene. The existing methods lack full utilization of driving scene information and ignore the importance of different objects or regions of the driving scene. To alleviate this, we propose a multimodal deep neural network based on anthropomorphic attention mechanism and prior knowledge (MDNN-AAM-PK). Specifically, a more comprehensive information of driving scene (RGB images, semantic images, optical flow images and depth images of successive frames) is as the input of MDNN-AAM-PK. An anthropomorphic attention mechanism is developed to calculate the importance of each pixel in the driving scene. A graph attention network is adopted to learn semantic context features. The convolutional long short-term memory network (ConvLSTM) is used to achieve the transition of fused features in successive frames. Furthermore, a training method based on prior knowledge is designed to improve the efficiency of training and the performance of DFoA prediction. These experiments, including experimental comparison with the state-of-the-art methods, the ablation study of the proposed method, the evaluation on different datasets and the visual assessment experiment in vehicle simulation platform, show that the proposed method can accurately predict DFoA and is better than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥猫完成签到,获得积分10
1秒前
2秒前
小蘑菇应助席以亦采纳,获得10
2秒前
melone发布了新的文献求助10
3秒前
研友_8Raw2Z发布了新的文献求助10
3秒前
科研通AI2S应助温赢采纳,获得10
3秒前
3秒前
何小珍关注了科研通微信公众号
4秒前
6秒前
7秒前
阔达幻丝完成签到,获得积分20
8秒前
8秒前
生动汲完成签到 ,获得积分20
8秒前
共享精神应助roclie采纳,获得10
9秒前
9秒前
研友_8Raw2Z完成签到,获得积分10
9秒前
10秒前
阳佟千青完成签到,获得积分10
10秒前
栗子完成签到,获得积分10
11秒前
妍妍发布了新的文献求助10
11秒前
猪猪hero发布了新的文献求助10
11秒前
快乐冰淇淋完成签到,获得积分10
11秒前
小白发布了新的文献求助10
12秒前
FashionBoy应助想摆就摆采纳,获得10
12秒前
陶陶完成签到,获得积分20
14秒前
卡卡西应助Orochimaru采纳,获得20
14秒前
无花果应助奋斗的夏柳采纳,获得20
15秒前
蒸馏水完成签到,获得积分10
15秒前
阳佟千青发布了新的文献求助30
15秒前
15秒前
研友_Lpawrn完成签到,获得积分10
15秒前
16秒前
郭志成完成签到 ,获得积分10
17秒前
17秒前
JamesPei应助科研通管家采纳,获得10
18秒前
鸣笛应助科研通管家采纳,获得20
18秒前
棋士应助科研通管家采纳,获得10
18秒前
今后应助mm采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717