A comprehensive review of object detection with deep learning

目标检测 计算机科学 深度学习 人工智能 卷积神经网络 帕斯卡(单位) 分割 对象类检测 Viola–Jones对象检测框架 机器学习 视觉对象识别的认知神经科学 领域(数学) 对象(语法) 人工神经网络 模式识别(心理学) 计算机视觉 人脸检测 数学 面部识别系统 程序设计语言 纯数学
作者
Ravpreet Kaur,Sarbjeet Singh
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:132: 103812-103812 被引量:110
标识
DOI:10.1016/j.dsp.2022.103812
摘要

In the realm of computer vision, Deep Convolutional Neural Networks (DCNNs) have demonstrated excellent performance. Video Processing, Object Detection, Image Segmentation, Image Classification, Speech Recognition and Natural Language Processing are some of the application areas of CNN. Object detection is the most crucial and challenging task of computer vision. It has numerous applications in the field of security, military, transportation and medical sciences. In this review, object detection and its different aspects have been covered in detail. With the gradual increase in the evolution of deep learning algorithms for detecting objects, a significant improvement in the performance of object detection models has been observed. However, this does not imply that the conventional object detection methods, which had been evolving for decades prior to the emergence of deep learning, had become outdated. There are some cases where conventional methods with global features are superior choice. This review paper starts with a quick overview of object detection followed by object detection frameworks, backbone convolutional neural network, and an overview of common datasets along with the evaluation metrics. Object detection problems and applications are also studied in detail. Some future research challenges in designing deep neural networks are discussed. Lastly, the performance of object detection models on PASCAL VOC and MS COCO datasets is compared and conclusions are drawn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyp发布了新的文献求助10
1秒前
2秒前
L.C.发布了新的文献求助10
3秒前
xiaosongshu发布了新的文献求助10
4秒前
4秒前
GH发布了新的文献求助10
5秒前
隐形曼青应助幸福的博采纳,获得10
5秒前
wam完成签到,获得积分10
7秒前
李健应助健忘天问采纳,获得10
7秒前
11秒前
xiaoxiang完成签到,获得积分10
12秒前
小米儿发布了新的文献求助10
12秒前
13秒前
L.C.完成签到,获得积分10
14秒前
15秒前
荔枝发布了新的文献求助20
15秒前
15秒前
sunny完成签到 ,获得积分10
16秒前
汉堡包应助高点点采纳,获得10
16秒前
16秒前
16秒前
17秒前
流明发布了新的文献求助10
18秒前
健忘天问发布了新的文献求助10
20秒前
今麦郎发布了新的文献求助10
21秒前
22秒前
幸福的博完成签到,获得积分10
22秒前
伴你笑发布了新的文献求助10
23秒前
GH完成签到,获得积分20
26秒前
领导范儿应助冯丽雪采纳,获得10
27秒前
30秒前
30秒前
及尔发布了新的文献求助10
30秒前
Dxy-TOFA完成签到,获得积分10
30秒前
谦让的雅青完成签到,获得积分10
31秒前
31秒前
什么东西完成签到,获得积分10
32秒前
安斯艾尔关注了科研通微信公众号
33秒前
33秒前
林一存完成签到 ,获得积分10
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146253
求助须知:如何正确求助?哪些是违规求助? 2797588
关于积分的说明 7824904
捐赠科研通 2453986
什么是DOI,文献DOI怎么找? 1305944
科研通“疑难数据库(出版商)”最低求助积分说明 627623
版权声明 601503