A comprehensive review of object detection with deep learning

目标检测 计算机科学 深度学习 人工智能 卷积神经网络 帕斯卡(单位) 分割 对象类检测 Viola–Jones对象检测框架 机器学习 视觉对象识别的认知神经科学 领域(数学) 对象(语法) 人工神经网络 模式识别(心理学) 计算机视觉 人脸检测 数学 面部识别系统 程序设计语言 纯数学
作者
Ravpreet Kaur,Sarbjeet Singh
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:132: 103812-103812 被引量:377
标识
DOI:10.1016/j.dsp.2022.103812
摘要

In the realm of computer vision, Deep Convolutional Neural Networks (DCNNs) have demonstrated excellent performance. Video Processing, Object Detection, Image Segmentation, Image Classification, Speech Recognition and Natural Language Processing are some of the application areas of CNN. Object detection is the most crucial and challenging task of computer vision. It has numerous applications in the field of security, military, transportation and medical sciences. In this review, object detection and its different aspects have been covered in detail. With the gradual increase in the evolution of deep learning algorithms for detecting objects, a significant improvement in the performance of object detection models has been observed. However, this does not imply that the conventional object detection methods, which had been evolving for decades prior to the emergence of deep learning, had become outdated. There are some cases where conventional methods with global features are superior choice. This review paper starts with a quick overview of object detection followed by object detection frameworks, backbone convolutional neural network, and an overview of common datasets along with the evaluation metrics. Object detection problems and applications are also studied in detail. Some future research challenges in designing deep neural networks are discussed. Lastly, the performance of object detection models on PASCAL VOC and MS COCO datasets is compared and conclusions are drawn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fx发布了新的文献求助10
刚刚
刚刚
Jasper应助perdgs采纳,获得10
1秒前
ningqing完成签到,获得积分10
2秒前
罗亚亚完成签到,获得积分10
2秒前
3秒前
科研狗发布了新的文献求助10
4秒前
nuo_11完成签到,获得积分10
4秒前
5秒前
落叶完成签到,获得积分10
7秒前
7秒前
8秒前
kuku发布了新的文献求助10
8秒前
王伦发布了新的文献求助10
8秒前
9秒前
9秒前
干净寻冬完成签到,获得积分10
9秒前
xuemengyao发布了新的文献求助10
9秒前
科研通AI2S应助sxl采纳,获得10
9秒前
Pearl完成签到 ,获得积分10
11秒前
LZH关闭了LZH文献求助
11秒前
研究僧发布了新的文献求助10
12秒前
酷波er应助薛喜康采纳,获得10
13秒前
顾矜应助巨大的小侠采纳,获得10
13秒前
13秒前
perdgs发布了新的文献求助10
14秒前
e746700020发布了新的文献求助10
14秒前
15秒前
15秒前
Nisali发布了新的文献求助10
18秒前
LZH关闭了LZH文献求助
18秒前
19秒前
20秒前
20秒前
上官若男应助默默襄采纳,获得10
20秒前
zhousiyu发布了新的文献求助10
21秒前
零度蓝莓完成签到,获得积分10
21秒前
baolong完成签到,获得积分10
22秒前
22秒前
求神拜佛完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600873
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843882
捐赠科研通 4678720
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241