Exploring the use of large language models (LLMs) in chemical engineering education: Building core course problem models with Chat-GPT

计算机科学 数学教育 工程伦理学 工程类 心理学
作者
Meng‐Lin Tsai,Chong Wei Ong,Cheng‐Liang Chen
出处
期刊:Education for Chemical Engineers [Elsevier]
卷期号:44: 71-95 被引量:59
标识
DOI:10.1016/j.ece.2023.05.001
摘要

This study highlights the potential benefits of integrating Large Language Models (LLMs) into chemical engineering education. In this study, Chat-GPT, a user-friendly LLM, is used as a problem-solving tool. Chemical engineering education has traditionally focused on fundamental knowledge in the classroom with limited opportunities for hands-on problem-solving. To address this issue, our study proposes an LLMs-assisted problem-solving procedure. This approach promotes critical thinking, enhances problem-solving abilities, and facilitates a deeper understanding of core subjects. Furthermore, incorporating programming into chemical engineering education prepares students with vital Industry 4.0 skills for contemporary industrial practices. During our experimental lecture, we introduced a simple example of building a model to calculate steam turbine cycle efficiency, and assigned projects to students for exploring the possible use of LLMs in solving various aspect of chemical engineering problems. Although it received mixed feedback from students, it was found to be an accessible and practical tool for improving problem-solving efficiency. Analyzing the student projects, we identified five common difficulties and misconceptions and provided helpful suggestions for overcoming them. Our course has limitations regarding using advanced tools and addressing complex problems. We further provide two additional examples to better demonstrate how to integrate LLMs into core courses. We emphasize the importance of universities, professors, and students actively embracing and utilizing LLMs as tools for chemical engineering education. Students must develop critical thinking skills and a thorough understanding of the principles behind LLMs, taking responsibility for their use and creations. This study provides valuable insights for enhancing chemical engineering education's learning experience and outcomes by integrating LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助keke采纳,获得10
刚刚
刚刚
孙韩发布了新的文献求助10
刚刚
zxf发布了新的文献求助10
刚刚
1秒前
1秒前
璀璨c发布了新的文献求助10
2秒前
2秒前
www发布了新的文献求助10
3秒前
红柚发布了新的文献求助10
3秒前
3秒前
心灵美的香旋关注了科研通微信公众号
4秒前
bing发布了新的文献求助10
4秒前
4秒前
北彧发布了新的文献求助10
4秒前
宙斯完成签到,获得积分10
5秒前
renerzi完成签到,获得积分10
5秒前
桔子鲁发布了新的文献求助10
5秒前
orixero应助HopeStar采纳,获得10
5秒前
6秒前
桐桐应助犹豫嚣采纳,获得10
6秒前
gansk发布了新的文献求助20
6秒前
yongheli发布了新的文献求助10
6秒前
Hello应助吉吉采纳,获得10
6秒前
7秒前
荧惑发布了新的文献求助10
7秒前
7秒前
YHY完成签到,获得积分10
8秒前
8秒前
9秒前
彭于晏应助北彧采纳,获得10
9秒前
9秒前
优雅的化蛹完成签到,获得积分10
10秒前
嘎嘎头发布了新的文献求助10
10秒前
lcc发布了新的文献求助30
10秒前
鲤鱼盼望完成签到,获得积分10
10秒前
skr发布了新的文献求助10
10秒前
聪明眼睛完成签到,获得积分10
11秒前
无情夏寒完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143406
求助须知:如何正确求助?哪些是违规求助? 2794708
关于积分的说明 7812043
捐赠科研通 2450840
什么是DOI,文献DOI怎么找? 1304134
科研通“疑难数据库(出版商)”最低求助积分说明 627179
版权声明 601386