Clinical and CT Imaging Differences Between Gastric Schwannoma and Gastric Leiomyoma

医学 列线图 接收机工作特性 置信区间 逻辑回归 优势比 放射科 核医学 曲线下面积 回顾性队列研究 内科学
作者
Luping Zhao,Hongfeng Xue,Zhanguo Sun,Yueqin Chen,Hao Yu,Sen Mao
出处
期刊:JCPSP. Journal of the College of Physicians & Surgeons Pakistan [College of Physicians and Surgeons Pakistan]
卷期号:33 (04): 369-373 被引量:1
标识
DOI:10.29271/jcpsp.2023.04.369
摘要

To determine whether computed tomography (CT) imaging features can be used to differentiate gastric schwannoma (GS) from gastric leiomyoma (GL) and to develop a nomogram as a predictive model.Retrospective study. Place and Duration of the Study: Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China, from July 2009 to June 2022.Clinical and imaging data of 43 patients with GS and 57 patients with GL were analysed retrospectively. The independent factors for differentiating GS and GL were obtained by the logistic regression analysis. Receiver operating characteristic curve (ROC) was plotted, area under curve (AUC) and calibration tests were used to evaluate the diagnostic efficiency of the model.The GS group had more females and was older than the GL group (p <0.05). There were statistical differences between the two groups in tumour location, growth mode, LD/SD ratio, necrosis, ulcers, the presence of tumour-associated lymph nodes, enhancement degree, and the HU (Hounsfield units) values of tumour in the venous phase and delayed phase (p <0.05). Logistic regression analysis showed that tumour location, growth mode, LD/SD (long and short diameters) ratio, and the presence of tumour-associated lymph nodes were independent factors in differentiating GS from GL, and a nomogram model was established accordingly. When the model threshold was >0.319, the AUC was 0.987 (95% confidence interval [CI] 0.941~0.999). The sensitivity and specificity were 97.7% and 94.7%, respectively.The proposed nomogram model based on CT imaging features can be used to differentiate GS from GL.Gastric leiomyoma, Gastric schwannoma, Computed tomography, Diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BALANCE完成签到 ,获得积分10
1秒前
1秒前
2秒前
feng完成签到,获得积分10
4秒前
4秒前
对3药不起完成签到,获得积分10
4秒前
小北发布了新的文献求助10
5秒前
陶醉的夏菡完成签到,获得积分10
5秒前
cc发布了新的文献求助10
5秒前
duanyf完成签到 ,获得积分10
6秒前
9秒前
赘婿应助jinyu采纳,获得10
9秒前
9秒前
小小铱完成签到,获得积分10
10秒前
11秒前
13秒前
13秒前
orixero应助YHold采纳,获得10
14秒前
未白镇常客完成签到,获得积分20
14秒前
善学以致用应助南昌黑人采纳,获得10
15秒前
cc关闭了cc文献求助
15秒前
angelinazh应助guard采纳,获得10
15秒前
在水一方应助清脆松采纳,获得10
15秒前
16秒前
Rui发布了新的文献求助10
16秒前
17秒前
ximei发布了新的文献求助10
17秒前
CHENXIN532完成签到,获得积分10
17秒前
AOtaku完成签到 ,获得积分10
18秒前
CipherSage应助more采纳,获得30
18秒前
ebby发布了新的文献求助10
18秒前
18秒前
科研通AI5应助奋斗秋采纳,获得10
18秒前
Lucas应助噼里啪啦采纳,获得10
19秒前
zjq完成签到 ,获得积分10
20秒前
20秒前
Lucas应助huan采纳,获得10
20秒前
AOtaku关注了科研通微信公众号
21秒前
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555360
求助须知:如何正确求助?哪些是违规求助? 3130973
关于积分的说明 9389383
捐赠科研通 2830472
什么是DOI,文献DOI怎么找? 1556047
邀请新用户注册赠送积分活动 726376
科研通“疑难数据库(出版商)”最低求助积分说明 715738