GMRLNet: A Graph-Based Manifold Regularization Learning Framework for Placental Insufficiency Diagnosis on Incomplete Multimodal Ultrasound Data

人工智能 计算机科学 特征学习 模式识别(心理学) 特征(语言学) 图形 杠杆(统计) 机器学习 非线性降维 理论计算机科学 降维 语言学 哲学
作者
Jing Jiao,Hongshuang Sun,Yi Huang,Menghua Xia,Mengyun Qiao,Yunyun Ren,Yuanyuan Wang,Yi Guo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3205-3218 被引量:3
标识
DOI:10.1109/tmi.2023.3278259
摘要

Multimodal analysis of placental ultrasound (US) and microflow imaging (MFI) could greatly aid in the early diagnosis and interventional treatment of placental insufficiency (PI), ensuring a normal pregnancy. Existing multimodal analysis methods have weaknesses in multimodal feature representation and modal knowledge definitions and fail on incomplete datasets with unpaired multimodal samples. To address these challenges and efficiently leverage the incomplete multimodal dataset for accurate PI diagnosis, we propose a novel graph-based manifold regularization learning (MRL) framework named GMRLNet. It takes US and MFI images as input and exploits their modality-shared and modality-specific information for optimal multimodal feature representation. Specifically, a graph convolutional-based shared and specific transfer network (GSSTN) is designed to explore intra-modal feature associations, thus decoupling each modal input into interpretable shared and specific spaces. For unimodal knowledge definitions, graph-based manifold knowledge is introduced to describe the sample-level feature representation, local inter-sample relations, and global data distribution of each modality. Then, an MRL paradigm is designed for inter-modal manifold knowledge transfer to obtain effective cross-modal feature representations. Furthermore, MRL transfers the knowledge between both paired and unpaired data for robust learning on incomplete datasets. Experiments were conducted on two clinical datasets to validate the PI classification performance and generalization of GMRLNet. State-of-the-art comparisons show the higher accuracy of GMRLNet on incomplete datasets. Our method achieves 0.913 AUC and 0.904 balanced accuracy (bACC) for paired US and MFI images, as well as 0.906 AUC and 0.888 bACC for unimodal US images, illustrating its application potential in PI CAD systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助吃饱了继续吃采纳,获得10
1秒前
调研昵称发布了新的文献求助10
1秒前
杨娟娟发布了新的文献求助10
2秒前
香蕉觅云应助Jindyla采纳,获得10
2秒前
dante完成签到,获得积分10
3秒前
yu完成签到 ,获得积分10
4秒前
所所应助稳重向南采纳,获得10
5秒前
传奇3应助三口采纳,获得10
7秒前
雨蒙蒙完成签到,获得积分10
7秒前
Shelley发布了新的文献求助20
8秒前
vivia完成签到 ,获得积分10
8秒前
9秒前
糯米小圆子完成签到,获得积分10
10秒前
10秒前
ZZZ完成签到,获得积分10
13秒前
14秒前
15秒前
杨tong发布了新的文献求助10
15秒前
JayL完成签到,获得积分10
15秒前
vivienne完成签到,获得积分10
16秒前
fei应助严小赖采纳,获得20
16秒前
17秒前
18秒前
19秒前
66666发布了新的文献求助20
20秒前
Strike发布了新的文献求助10
21秒前
245关闭了245文献求助
21秒前
碧蓝小蜜蜂完成签到,获得积分10
23秒前
贺呵呵完成签到,获得积分10
24秒前
Ava应助Strike采纳,获得10
25秒前
一丁雨完成签到,获得积分10
26秒前
大模型应助YYY采纳,获得10
26秒前
26秒前
27秒前
BK1BK22完成签到 ,获得积分10
28秒前
lqllll发布了新的文献求助10
30秒前
33秒前
骑士发布了新的文献求助10
34秒前
在水一方应助科研通管家采纳,获得30
35秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7879102
捐赠科研通 2467351
什么是DOI,文献DOI怎么找? 1313394
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919