功能数据分析
多元分析
多元统计
数据分析
函数主成分分析
计算机科学
数据挖掘
统计
数学
出处
期刊:Journal of the Korean Data & Information Science Society
[Korean Data and Information Science Society]
日期:2022-09-30
卷期号:33 (5): 817-827
被引量:1
标识
DOI:10.7465/jkdi.2022.33.5.817
摘要
함수형 데이터 분석 (Functional data analysis)이란 함수들로 이루어진 자료를 분석하는 이론이다. 특히 시간에 따라 측정되고 관측된 데이터 분석에 있어서 함수형 데이터 분석은 기존의 단순히 점들로 이루어진 다변량 데이터 분석 (Multivariate data analysis)과 다른 접근을 필요로 한다. 즉, 함수형 데이터 분석은 힐베르트 (Hilbert) 공간에서 데이터를 다루기 때문에, 기존의 유클리디안 공간에서 다루어 왔던 다변량 데이터 분석과 이에 맞게 쓰이는 여러 통계 방법론들을 동일하게 적용할 수 없기에 재정의를 해야 한다. 이러한 이유로 함수형 데이터 분석의 다양한 통계 방법론들은 다변량 데이터 분석의 방법론들과 비교했을 때 서로 다른 분석 및 예측 결과를 낳았고, 특히 함수형 자료에 있어서는 월등히 좋은 결과를 도출해 냈다. 하지만 이러한 함수형 자료에 왜 함수형 데이터 분석이 적용되어야 하는지, 그리고 다변량 데이터 분석이 적용되었을 때 그 결과와 성능에 있어서 어떤 차이가 있는지는 크게 다룬 논문이 없다. 따라서 본 논문에서는 다양한 함수형 자료를 이용해서 함수형 데이터 분석과 다변량 데이터 분석을 적용했을 때의 결과와 성능을 회귀 모형을 이용하여 비교 및 분석한다.
科研通智能强力驱动
Strongly Powered by AbleSci AI