Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing

计算机科学 人工智能 联营 目标检测 深度学习 机器视觉 计算机视觉 模式识别(心理学)
作者
Wenhao Li,Haiou Zhang,Guilan Wang,Gang Xiong,Meihua Zhao,Guokuan Li,Runsheng Li
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:80: 102470-102470 被引量:98
标识
DOI:10.1016/j.rcim.2022.102470
摘要

Wire and arc additive manufacturing (WAAM) is an emerging manufacturing technology that is widely used in different manufacturing industries. To achieve fully automated production, WAAM requires a dependable, efficient, and automatic defect detection system. Although machine learning is dominant in the object detection domain, classic algorithms have defect detection difficulty in WAAM due to complex defect types and noisy detection environments. This paper presents a deep learning-based novel automatic defect detection solution, you only look once (YOLO)-attention, based on YOLOv4, which achieves both fast and accurate defect detection for WAAM. YOLO-attention makes improvements on three existing object detection models: the channel-wise attention mechanism, multiple spatial pyramid pooling, and exponential moving average. The evaluation on the WAAM defect dataset shows that our model obtains a 94.5 mean average precision (mAP) with at least 42 frames per second. This method has been applied to additive manufacturing of single-pass, multi-pass deposition and parts. It demonstrates its feasibility in practical industrial applications and has potential as a vision-based methodology that can be implemented in real-time defect detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜发布了新的文献求助10
刚刚
calm发布了新的文献求助10
3秒前
十一完成签到,获得积分10
3秒前
Cwx2020发布了新的文献求助10
3秒前
Jasper应助gxh66采纳,获得10
5秒前
鬼才之眼完成签到,获得积分10
6秒前
Fury发布了新的文献求助10
7秒前
ccq发布了新的文献求助10
7秒前
yanxueyi完成签到 ,获得积分10
8秒前
清醒完成签到,获得积分10
10秒前
共享精神应助wang采纳,获得10
11秒前
12秒前
13秒前
13秒前
calm完成签到,获得积分20
14秒前
17秒前
17秒前
quanjia发布了新的文献求助10
18秒前
啦啦啦发布了新的文献求助10
18秒前
20秒前
21秒前
21秒前
巫马小霜发布了新的文献求助20
23秒前
wang发布了新的文献求助10
24秒前
布洛芬发布了新的文献求助10
25秒前
Singularity应助甜甜采纳,获得10
26秒前
bestbanana发布了新的文献求助10
26秒前
刻苦小丸子完成签到,获得积分10
26秒前
wnche完成签到,获得积分10
27秒前
上官若男应助爱睡午觉采纳,获得10
27秒前
万能图书馆应助清醒采纳,获得10
28秒前
和谐小南完成签到,获得积分10
29秒前
司徒不二完成签到,获得积分0
30秒前
30秒前
在水一方应助kissssp采纳,获得10
35秒前
Fa完成签到,获得积分10
37秒前
37秒前
38秒前
Dado完成签到,获得积分10
38秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023