FAPD: An Astringency Threshold and Astringency Type Prediction Database for Flavonoid Compounds Based on Machine Learning

朴素贝叶斯分类器 支持向量机 随机森林 人工智能 类黄酮 机器学习 计算机科学 涩的 公共化学 化学 模式识别(心理学) 食品科学 生物化学 品味 抗氧化剂
作者
Tianyang Guo,Fei Pan,Zhiyong Cui,Zichen Yang,Qiong Chen,Lei Zhao,Huanlu Song
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:71 (9): 4172-4183 被引量:34
标识
DOI:10.1021/acs.jafc.2c08822
摘要

Astringency is a puckering or velvety sensation mainly derived from flavonoid compounds in food. The traditional experimental approach for astringent compound discovery was labor-intensive and cost-consuming, while machine learning (ML) can greatly accelerate this procedure. Herein, we propose the Flavonoid Astringency Prediction Database (FAPD) based on ML. First, the Molecular Fingerprint Similarities (MFSs) and thresholds of flavonoid compounds were hierarchically clustering analyzed. For the astringency threshold prediction, four regressions models (i.e., Gaussian Process Regression (GPR), Support Vector Regression (SVR), Random Forest (RF), and Gradient Boosted Decision Tree (GBDT)) were established, and the best model was RF which was interpreted by the SHapley Additive exPlanations (SHAP) approach. For the astringency type prediction, six classification models (i.e., RF, GBDT, Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Stochastic Gradient Descent (SGD)) were established, and the best model was SGD. Furthermore, over 1200 natural flavonoid compounds were discovered and built into the customized FAPD. In FAPD, the astringency thresholds were achieved by RF; the astringency types were distinguished by SGD, and the real and predicted astringency types were verified by t-Distributed Stochastic Neighbor Embedding (t-SNE). Therefore, ML models can be used to predict the astringency threshold and astringency type of flavonoid compounds, which provides a new paradigm to research the molecular structure–flavor property relationship of food components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuwu发布了新的文献求助10
刚刚
刚刚
摆烂小耶发布了新的文献求助20
刚刚
1秒前
2秒前
ymqin1982完成签到,获得积分10
2秒前
1111111111111完成签到,获得积分10
2秒前
李健应助Cyber_relic采纳,获得10
2秒前
卢小白完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
李龙龙发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
ccm应助郡河采纳,获得10
4秒前
JJJ发布了新的文献求助10
4秒前
5秒前
chenjunlin发布了新的文献求助10
5秒前
Sunny发布了新的文献求助10
5秒前
我是老大应助研友_ZA7B7L采纳,获得10
5秒前
李健应助阿白采纳,获得10
5秒前
领导范儿应助不散的和弦采纳,获得10
6秒前
未来完成签到,获得积分10
6秒前
6秒前
6秒前
Function完成签到,获得积分10
7秒前
英俊的铭应助刻苦的如霜采纳,获得10
7秒前
聪明的战斗机完成签到,获得积分10
7秒前
haoxuan发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
asdfzxcv应助小柯采纳,获得30
9秒前
乂领域完成签到,获得积分10
9秒前
9秒前
wxxkx完成签到,获得积分10
9秒前
一水合羟基磷酸钙完成签到,获得积分10
10秒前
lucky_chen完成签到 ,获得积分10
10秒前
栗子发布了新的文献求助80
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647168
求助须知:如何正确求助?哪些是违规求助? 4773018
关于积分的说明 15038081
捐赠科研通 4805852
什么是DOI,文献DOI怎么找? 2570007
邀请新用户注册赠送积分活动 1526881
关于科研通互助平台的介绍 1485983