FAPD: An Astringency Threshold and Astringency Type Prediction Database for Flavonoid Compounds Based on Machine Learning

朴素贝叶斯分类器 支持向量机 随机森林 人工智能 类黄酮 机器学习 计算机科学 涩的 公共化学 化学 模式识别(心理学) 食品科学 生物化学 品味 抗氧化剂
作者
Tianyang Guo,Fei Pan,Zhiyong Cui,Zichen Yang,Qiong Chen,Lei Zhao,Huanlu Song
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:71 (9): 4172-4183 被引量:11
标识
DOI:10.1021/acs.jafc.2c08822
摘要

Astringency is a puckering or velvety sensation mainly derived from flavonoid compounds in food. The traditional experimental approach for astringent compound discovery was labor-intensive and cost-consuming, while machine learning (ML) can greatly accelerate this procedure. Herein, we propose the Flavonoid Astringency Prediction Database (FAPD) based on ML. First, the Molecular Fingerprint Similarities (MFSs) and thresholds of flavonoid compounds were hierarchically clustering analyzed. For the astringency threshold prediction, four regressions models (i.e., Gaussian Process Regression (GPR), Support Vector Regression (SVR), Random Forest (RF), and Gradient Boosted Decision Tree (GBDT)) were established, and the best model was RF which was interpreted by the SHapley Additive exPlanations (SHAP) approach. For the astringency type prediction, six classification models (i.e., RF, GBDT, Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Stochastic Gradient Descent (SGD)) were established, and the best model was SGD. Furthermore, over 1200 natural flavonoid compounds were discovered and built into the customized FAPD. In FAPD, the astringency thresholds were achieved by RF; the astringency types were distinguished by SGD, and the real and predicted astringency types were verified by t-Distributed Stochastic Neighbor Embedding (t-SNE). Therefore, ML models can be used to predict the astringency threshold and astringency type of flavonoid compounds, which provides a new paradigm to research the molecular structure-flavor property relationship of food components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得30
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
4秒前
可爱的函函应助zuozuo采纳,获得10
4秒前
朴素的从灵完成签到 ,获得积分10
5秒前
cnd完成签到,获得积分10
6秒前
依然的风暴完成签到,获得积分10
6秒前
三瓣橘子发布了新的文献求助10
8秒前
健忘的魔女完成签到,获得积分20
8秒前
慕青应助义气高丽采纳,获得10
9秒前
11秒前
Owen应助天边的云彩采纳,获得10
12秒前
zuozuo完成签到,获得积分10
13秒前
夜枫完成签到 ,获得积分10
13秒前
Doctor_wan89完成签到,获得积分10
15秒前
16秒前
16秒前
情怀应助jwq采纳,获得10
17秒前
18秒前
Nn发布了新的文献求助10
18秒前
卡牌大师完成签到,获得积分10
19秒前
19秒前
20秒前
smy发布了新的文献求助10
20秒前
cfg发布了新的文献求助10
20秒前
cae哈哈哈完成签到,获得积分10
21秒前
orixero应助zrs采纳,获得10
21秒前
22秒前
Jesper发布了新的文献求助10
24秒前
子羽完成签到,获得积分10
25秒前
27秒前
直率的画笔完成签到,获得积分10
27秒前
自信晓博发布了新的文献求助10
27秒前
科研通AI2S应助冻冻妖采纳,获得10
27秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221007
求助须知:如何正确求助?哪些是违规求助? 2869720
关于积分的说明 8167163
捐赠科研通 2536502
什么是DOI,文献DOI怎么找? 1368903
科研通“疑难数据库(出版商)”最低求助积分说明 645285
邀请新用户注册赠送积分活动 618965