FAPD: An Astringency Threshold and Astringency Type Prediction Database for Flavonoid Compounds Based on Machine Learning

朴素贝叶斯分类器 支持向量机 随机森林 人工智能 类黄酮 机器学习 计算机科学 涩的 公共化学 化学 模式识别(心理学) 食品科学 生物化学 品味 抗氧化剂
作者
Tianyang Guo,Fei Pan,Zhiyong Cui,Zichen Yang,Qiong Chen,Lei Zhao,Huanlu Song
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:71 (9): 4172-4183 被引量:19
标识
DOI:10.1021/acs.jafc.2c08822
摘要

Astringency is a puckering or velvety sensation mainly derived from flavonoid compounds in food. The traditional experimental approach for astringent compound discovery was labor-intensive and cost-consuming, while machine learning (ML) can greatly accelerate this procedure. Herein, we propose the Flavonoid Astringency Prediction Database (FAPD) based on ML. First, the Molecular Fingerprint Similarities (MFSs) and thresholds of flavonoid compounds were hierarchically clustering analyzed. For the astringency threshold prediction, four regressions models (i.e., Gaussian Process Regression (GPR), Support Vector Regression (SVR), Random Forest (RF), and Gradient Boosted Decision Tree (GBDT)) were established, and the best model was RF which was interpreted by the SHapley Additive exPlanations (SHAP) approach. For the astringency type prediction, six classification models (i.e., RF, GBDT, Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Stochastic Gradient Descent (SGD)) were established, and the best model was SGD. Furthermore, over 1200 natural flavonoid compounds were discovered and built into the customized FAPD. In FAPD, the astringency thresholds were achieved by RF; the astringency types were distinguished by SGD, and the real and predicted astringency types were verified by t-Distributed Stochastic Neighbor Embedding (t-SNE). Therefore, ML models can be used to predict the astringency threshold and astringency type of flavonoid compounds, which provides a new paradigm to research the molecular structure–flavor property relationship of food components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JW完成签到,获得积分20
1秒前
好运藏在善良里完成签到,获得积分10
1秒前
3秒前
4秒前
osmanthus应助majm采纳,获得10
4秒前
科研通AI5应助徐徐诱之采纳,获得10
6秒前
6秒前
冰魂应助闭着眼数星星采纳,获得20
8秒前
王婷静发布了新的文献求助10
8秒前
华仔应助slj采纳,获得10
9秒前
友好晓兰完成签到,获得积分10
10秒前
11秒前
FashionBoy应助婧婷采纳,获得10
12秒前
叶克思完成签到 ,获得积分10
13秒前
lqmer给αβ的求助进行了留言
15秒前
16秒前
16秒前
17秒前
凉逗听发布了新的文献求助10
18秒前
彭于晏应助yy_ren采纳,获得10
19秒前
19秒前
xzy998发布了新的文献求助10
20秒前
ztlooo发布了新的文献求助20
20秒前
FashionBoy应助呆萌代桃采纳,获得10
20秒前
IUGHBLJHL完成签到,获得积分10
21秒前
小二郎应助momosci采纳,获得10
21秒前
slj发布了新的文献求助10
22秒前
JLLi发布了新的文献求助10
22秒前
23秒前
YJ888发布了新的文献求助10
23秒前
俭朴的天曼完成签到,获得积分10
25秒前
27秒前
28秒前
28秒前
29秒前
慕青应助微笑的寒梦采纳,获得10
30秒前
高级丹药师完成签到,获得积分10
30秒前
婧婷发布了新的文献求助10
32秒前
zoey发布了新的文献求助10
32秒前
Orange应助英俊溪灵采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772768
求助须知:如何正确求助?哪些是违规求助? 3318318
关于积分的说明 10189651
捐赠科研通 3033100
什么是DOI,文献DOI怎么找? 1664093
邀请新用户注册赠送积分活动 796089
科研通“疑难数据库(出版商)”最低求助积分说明 757245