自愈水凝胶
乙二醇
材料科学
电极
生物电子学
导电体
纳米技术
高分子化学
生物医学工程
化学工程
复合材料
化学
生物传感器
医学
工程类
物理化学
作者
Junggeon Park,Sang‐Hun Lee,Mingyu Lee,Hyung‐Seok Kim,Jae Young Lee
出处
期刊:Small
[Wiley]
日期:2023-02-24
卷期号:19 (21)
被引量:19
标识
DOI:10.1002/smll.202300250
摘要
Bioelectrodes have been developed to efficiently mediate electrical signals of biological systems as stimulators and recording devices. Recently, conductive hydrogels have garnered great attention as emerging materials for bioelectrode applications because they can permit intimate/conformal contact with living tissues and tissue-like softness. However, administration and control over the in vivo lifetime of bioelectrodes remain challenges. Here, injectable conductive hydrogels (ICHs) with tunable degradability as implantable bioelectrodes are developed. ICHs were constructed via thiol-ene reactions using poly(ethylene glycol)-tetrathiol and thiol-functionalized reduced graphene oxide with either hydrolyzable poly(ethylene glycol)-diacrylate or stable poly(ethylene glycol)-dimaleimide, the resultant hydrogels of which are degradable and nondegradable, respectively. The ICH electrodes had conductivities of 21-22 mS cm-1 and Young's moduli of 15-17 kPa, and showed excellent cell and tissue compatibility. The hydrolyzable conductive hydrogels disappeared 3 days after in vivo administration, while the stable conductive hydrogels maintained their shapes for up to 7 days. Our proof-of-concept studies reveal that electromyography signals with significantly improved sensitivity from rats could be obtained from the injected ICH electrodes compared to skin electrodes and injected nonconductive hydrogel electrodes. The ICHs, offering convenience in use, controllable degradation and excellent signal transmission, will have great potential to develop various bioelectronics devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI