氮氧化物
情态动词
特征选择
发电站
计算机科学
非线性系统
一般化
分解
人工智能
工程类
工艺工程
数据挖掘
化学
数学
电气工程
物理
燃烧
数学分析
量子力学
有机化学
高分子化学
作者
Zheng Wu,Yue Zhang,Ze Dong
出处
期刊:Energy
[Elsevier]
日期:2023-03-02
卷期号:271: 127044-127044
被引量:25
标识
DOI:10.1016/j.energy.2023.127044
摘要
Accurate NOx concentration prediction is of great significance for the pollutant emission control and safe operation of coal-fired power plants. The global properties of the research object cannot be adequately described by a single data driven model, which hinders generalization performance. We propose a NOx emission concentration prediction method based on joint knowledge and data driven. First, we introduce a knowledge driven combined feature selection method to provide a global feature basis for data driven modeling. Second, we enable adaptive decomposition of the variational modal decomposition (VMD) using the modal energy difference and sample entropy. The method can extract deep time-frequency information in nonlinear and non-smooth features. Finally, we use the Informer combined with an adaptive time series segmentation method to predict NOx concentration. The experimental results indicate that the proposed method predicts the NOx concentration better than several comparative models.
科研通智能强力驱动
Strongly Powered by AbleSci AI